Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Polypyrrole (PPy)
2.3. Synthesis of Polypyrrole/Gum Arabic (PPy/GA) Composites
2.4. Characterization of the Synthesized Polymer and its Composites with Gum Arabic
2.5. Fabrication of Solid-State Supercapacitors
3. Results and Discussion
3.1. UV-Visible Analysis of the Synthesized PPy and PPy/GA Composites
3.2. FTIR Analysis of the Synthesized PPy and PPy/GA Composites
3.3. SEM Analysis of PPy and PPy/GA Composites
3.4. X-ray Diffraction
3.5. Thermal Gravimetric Analysis (TGA)
3.6. Electrochemical Properties
3.6.1. Cyclic Voltammetry
3.6.2. Effect of Scan Rate on CV Curves of PPy/GA 1 Composite
3.6.3. EIS Study of PPy and PPY/GA Composites
3.6.4. Galvanostatic Charge-Discharge (GCD) Study of PPy and PPY/GA Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Gao, M.; Tong, L.; Cai, K. Polypyrrole/nylon membrane composite film for ultra-flexible all-solid supercapacitor. J. Mater. 2020, 6, 339–347. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Li, X.; Li, Q.; Xia, Y. Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance. J. Mater. Sci. Mater. Electron. 2019, 31, 581–586. [Google Scholar] [CrossRef]
- Du, X.; Wang, C.; Chen, M.; Jiao, Y.; Wang, J. Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J. Phys. Chem. C 2009, 113, 2643–2646. [Google Scholar] [CrossRef]
- Sarno, M.; Baldino, L.; Scudieri, C.; Cardea, S.; Reverchon, E. A one-step SC-CO2 assisted technique to produce compact PVDF-HFP MoS2 supercapacitor device. J. Phys. Chem. Solids 2020, 136, 109132. [Google Scholar] [CrossRef]
- Wu, W.; Yang, L.; Chen, S.; Shao, Y.; Jing, L.; Zhao, G.; Wei, H. Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Adv. 2015, 5, 91645–91653. [Google Scholar] [CrossRef]
- Chen, G.Z. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog. Nat. Sci. Mater. Int. 2013, 23, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Jin, S.; Wang, C. Novel graphene-based composite as binder-free high-performance electrodes for energy storage systems. J. Mater. 2016, 2, 291–308. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; Nature Publishing Group: Berlin, Germany, 2010; pp. 320–329. [Google Scholar]
- Lu, Q.; Chen, J.G.; Xiao, J.Q. Nanostructured Electrodes for High-Performance Pseudocapacitors. Angew. Chem. Int. Ed. 2013, 52, 1882–1889. [Google Scholar] [CrossRef]
- Sowmiya, G.; Velraj, G. Designing a ternary composite of PPy-PT/TiO2 using TiO2, and multipart-conducting polymers for supercapacitor application. J. Mater. Sci. Mater. Electron. 2020, 31, 14287–14294. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [Green Version]
- Candelaria, S.L.; Shao, Y.; Zhou, W.; Li, X.; Xiao, J.; Zhang, J.-G.; Wang, Y.; Liu, J.; Li, J.; Cao, G. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.E.; Pell, W.G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 2003, 7, 637–644. [Google Scholar] [CrossRef]
- Huang, J.; Sumpter, B.G.; Meunier, V. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chem.-A Eur. J. 2008, 14, 6614–6626. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Goyal, S.L.; Gupta, V.; Rawal, I. MnO2-Magnetic Core-Shell Structured Polyaniline Dependent Enhanced EMI Shielding Effectiveness: A Study of VRH Conduction. ChemistrySelect 2019, 4, 9194–9210. [Google Scholar] [CrossRef]
- Cevik, E.; Gunday, S.T.; Bozkurt, A.; Amine, R.; Amine, K. Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. J. Power Sources 2020, 474, 228544. [Google Scholar] [CrossRef]
- Eisazadeh, H. Studying the characteristics of polypyrrole and its composites. World J. Chem. 2007, 2, 67–74. [Google Scholar]
- Jang, K.S.; Lee, H.; Moon, B. Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synth. Met. 2004, 143, 289–294. [Google Scholar] [CrossRef]
- Roy, S.; Mishra, S.; Yogi, P.; Saxena, S.K.; Sagdeo, P.R.; Kumar, R. Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties. J. Inorg. Organomet. Polym. Mater. 2017, 27, 257–263. [Google Scholar] [CrossRef]
- Malinauskas, A.; Malinauskiene, J.; Ramanavicius, A. Conducting polymer-based nanostructurized materials: Electrochemical aspects. Nanotechnology 2005, 16, R51–R62. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hadi, J.M.; Dannoun, E.M.A.; Abdulwahid, R.T.; Saeed, S.R.; Marf, A.S.; Karim, W.O.; Kadir, M.F. The Study of Plasticized Amorphous Biopolymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan with High Ion Conductivity for Energy Storage Electrical Double-Layer Capacitors (EDLC) Device Application. Polymers 2020, 12, 1938. [Google Scholar] [CrossRef]
- Cevik, E.; Bozkurt, A.; Dirican, M.; Zhang, X. High performance flexible supercapacitors including redox active molybdate incorporated Poly (vinylphosphonic acid) hydrogels. Int. J. Hydrogen Energy 2020, 45, 2186–2194. [Google Scholar] [CrossRef]
- Aziz, S.; Nofal, M.; Abdulwahid, R.; Ghareeb, H.O.; Dannoun, E.; Abdullah, R.M.; Hamsan, M.; Kadir, M. Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage—EEC Modeling, Transport Properties, and Charge-Discharge Characteristics. Polymers 2021, 13, 803. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Kumar, R. Study the Structural and Optical behaviour of Conducting Polymer based nanocomposites: ZrO2-Polypyrrole Nanocomposites. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Lima, Peru, 2018; Volume 360, p. 012038. [Google Scholar]
- Vasilyeva, S.V.; Vorotyntsev, M.A.; Bezverkhyy, I.; Lesniewska, E.; Heintz, O.; Chassagnon, R. Synthesis and Characterization of Palladium Nanoparticle/Polypyrrole Composites. J. Phys. Chem. C 2008, 112, 19878–19885. [Google Scholar] [CrossRef]
- Habelhames, F.; Nessark, B.; Bouhafs, D.; Cheriet, A.; Derbal, H. Synthesis and characterisation of polypyrrole–indium phosphide composite film. Ionics 2010, 16, 177–184. [Google Scholar] [CrossRef]
- John, J.; Saheeda, P.; Sabeera, K.; Jayalekshmi, S. Doped polypyrrole with good solubility and film forming properties suitable for device applications. Mater. Today Proc. 2018, 5, 21140–21146. [Google Scholar] [CrossRef]
- Bilal, S.; Shah, A.A.; Shah, A.U.H.A.; Gul, H.; Ullah, W.; Gul, S. Dodecylbenzenesulphonic Acid Doped Polypyrrole/Graphene Oxide Composite with Enhanced Electrical Conductivity. J. Sci. Innov. Res. 2020, 9, 54–62. [Google Scholar]
- Bilal, S.; Perveen, F.; Shah, A.A. Chemical synthesis of polypyrrole doped with dodecyl benzene sulfonic acid. J. Sci. Innov. Res. 2015, 4, 33–42. [Google Scholar]
- Li, Y.; Yu, C. One-Step Electrosynthesis of Graphene Oxide-Doped Polypyrrole Nanocomposite as a Nanointerface for Electrochemical Impedance Detection of Cell Adhesion and Proliferation Using Two Approaches. J. Nanomater. 2016, 2016, 8932908. [Google Scholar] [CrossRef]
- Ruhi, G.; Dhawan, H.C.K.; Sambyal, P.; Bhandari, H. Corrosion protection of mild steel by environment friendly Polypyrrole/Gum Acacia Composite Coatings. Adv. Mater. Lett. 2018, 9, 158–168. [Google Scholar] [CrossRef]
- Khan, M.; Shah, L.A.; Khan, M.A.; Khattak, N.S.; Zhao, H. Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Mater. Sci. Eng. C 2020, 116, 111278. [Google Scholar] [CrossRef] [PubMed]
- Vasile, F.E.; Martinez, M.J.; Ruiz-Henestrosa, V.M.P.; Judis, M.A.; Mazzobre, M.F. Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis alba) in comparison with gum arabic. Food Hydrocoll. 2016, 56, 245–253. [Google Scholar] [CrossRef]
- Advincula, A.O.; Maquiling, J.T. Morphology, Conductivity, and Mechanical Properties of Electropolymerized Polypyrrole/Silver-Coated Granular Microsphere Composite Films. Braz. J. Phys. 2021, 51, 698–721. [Google Scholar] [CrossRef]
- Mohammed, A.M.E. Estimation of the active components in gum Arabic collected from western Sudan. Int. J. Sci. Res. 2015, 80, 9. [Google Scholar]
- Darzi, H.H.; Larimi, S.G.; Darzi, G.N. Synthesis, characterization and physical properties of a novel xanthan gum/polypyrrole nanocomposite. Synth. Met. 2012, 162, 236–239. [Google Scholar] [CrossRef]
- Bhadra, S.; Khastgir, D. Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym. Test. 2008, 27, 851–857. [Google Scholar] [CrossRef]
- Choudhary, R.B.; Nayak, D. Tailoring the properties of 2-DrGO-PPy-ZnS nanocomposite as emissive layer for OLEDs. Optik 2021, 231, 166336. [Google Scholar] [CrossRef]
- Barik, P.; Bhattacharjee, A.; Roy, M. Characterization of dielectric properties of developed CdS-gum arabic composites in low frequency region. Polym. Compos. 2016, 37, 108–114. [Google Scholar] [CrossRef]
- Ramesan, M.T.; Greeshma, K.P.; Parvathi, K.; Anilkumar, T. Structural, electrical, thermal, and gas sensing properties of new conductive blend nanocomposites based on polypyrrole/phenothiazine/silver-doped zinc oxide. J. Vinyl Addit. Technol. 2020, 26, 187–195. [Google Scholar] [CrossRef]
- Sulaiman, M.G.; Ammar, A.F. Synthesis of Gum Arabic-g-polyaniline using diode laser. Int. J. Biol. Macromol. 2020, 161, 848–853. [Google Scholar] [CrossRef]
- Arunachalam, S.; Kirubasankar, B.; Pan, D.; Liu, H.; Yan, C.; Guo, Z.; Angaiah, S. Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. 2020, 5, 259–273. [Google Scholar] [CrossRef]
- Wang, W.; Sadak, O.; Guan, J.; Gunasekaran, S. Facile synthesis of graphene paper/polypyrrole nanocomposite as electrode for flexible solid-state supercapacitor. J. Energy Storage 2020, 30, 101533. [Google Scholar] [CrossRef]
- Kulandaivalu, S.; Azahari, M.N.M.; Azman, N.H.N.; Sulaiman, Y. Ultrahigh specific energy of layer by layer polypyrrole/graphene oxide/multi-walled carbon nanotube| polypyrrole/manganese oxide composite for supercapacitor. J. Energy Storage 2020, 28, 101219. [Google Scholar] [CrossRef]
- Yağan, A. Investigation of Polypyrrole-Based Iron Electrodes as Supercapacitors. Int. J. Electrochem. Sci. 2019, 14, 3978–3985. [Google Scholar] [CrossRef]
- Oliveira, R.D.; Santos, C.S.; Ferreira, R.T.; Marciniuk, G.; Marchesi, L.F.; Garcia, J.; Vidotti, M.; Pessoa, C.A. Interfacial characterization and supercapacitive properties of polyaniline—Gum arabic nanocomposite/graphene oxide LbL modified electrodes. Appl. Surf. Sci. 2017, 425, 16–23. [Google Scholar] [CrossRef]
- Khati, K.; Joshi, I.; Zaidi, M.G.H. Electro-capacitive performance of haemoglobin/polypyrrole composites for high power density electrode. J. Anal. Sci. Technol. 2018, 9, 24. [Google Scholar] [CrossRef]
- Bober, P.; Gavrilov, N.; Kovalcik, A.; Mičušík, M.; Unterweger, C.; Pašti, I.A.; Šeděnková, I.; Acharya, U.; Pfleger, J.; Filippov, S.K.; et al. Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues. Mater. Chem. Phys. 2018, 213, 352–361. [Google Scholar] [CrossRef]
- Nyström, G. Nanocellulose and Polypyrrole Composites for Electrical Energy Storage. Ph.D. Thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2012. [Google Scholar]
- Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Gu, S.; Liu, R.; Wang, X.; Liu, L.; Xu, W. Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 2015, 22, 1355–1363. [Google Scholar] [CrossRef]
- Wang, H.; Bian, L.; Zhou, P.; Tang, J.; Tang, W. Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A 2013, 1, 578–584. [Google Scholar] [CrossRef]
- Mo, H.; Zang, L.; Yang, C.; Wei, C.; Zhang, F.; Lu, S.; Wang, Z.; Huang, X. Polypyrrole/sisal fiber composites for energy storage. In Proceedings of the 2015 International Conference on Power Electronics and Energy Engineering; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Jyothibasu, J.P.; Chen, M.-Z.; Lee, R.-H. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors. ACS Omega 2020, 5, 6441–6451. [Google Scholar] [CrossRef] [Green Version]
Sample Designation | DBSA (mL) | BPO (g) | GA (wt%) |
---|---|---|---|
PPy/GA 1 | 0.5 | 0.303 | 0.125 |
PPy/GA 2 | 0.5 | 0.303 | 0.25 |
PPy/GA 3 | 0.5 | 0.303 | 0.5 |
PPy/GA 4 | 0.5 | 0.303 | 0.75 |
PPy/GA 5 | 0.5 | 0.303 | 1 |
S. No | Samples | Solution Resistance (Rs) (Ω) |
---|---|---|
1 | PPy/GA 1 | 12.75 |
2 | PPy/GA 2 | 279 |
3 | PPy/GA 3 | 2682 |
4 | PPy/GA 4 | 1456 |
5 | PPy/GA 5 | 98 |
Sample | Current Density (A/g) | Specific Capacitance (F/g) | Energy Density (Wh/kg) | Power Density(W/kg) |
---|---|---|---|---|
PPy | 1 | 168.6 | 33.698 | 599.37 |
PPy/GA 1 | 1 | 368.57 | 73.667 | 599.609 |
PPy/GA 2 | 1 | 325.83 | 65.12 | 599.607 |
PPy/GA 3 | 1 | 118.83 | 23.75 | 599.579 |
PPy/GA 4 | 1 | 86.25 | 17.238 | 599.582 |
PPy/GA 5 | 1 | 230 | 45.97 | 599.608 |
Electrode Material | Specific Capacitance | Current Density | Reference |
---|---|---|---|
PPy/lignin | 11.42 | 2.0A g−1 | [49] |
PPy/Nanocellulose | 35 F g−1 | 0.27 A g−1 | [50] |
PPy/Cotton | 225 F g−1 | 0.6 mA cm−2 | [51] |
PPy/BC | 316 F g−1 | 0.2 A g−1 | [52] |
PPy/SFC | 367 F g−1 | 0.2 A g−1 | [53] |
PPy/GA | 368.57 F g−1 | 1.0 A g−1 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, R.; Khan, N.; Khattak, R.; Khan, M.; Khan, M.S.; Ali, O.M. Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites. Polymers 2022, 14, 242. https://doi.org/10.3390/polym14020242
Ullah R, Khan N, Khattak R, Khan M, Khan MS, Ali OM. Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites. Polymers. 2022; 14(2):242. https://doi.org/10.3390/polym14020242
Chicago/Turabian StyleUllah, Rizwan, Nadia Khan, Rozina Khattak, Mehtab Khan, Muhammad Sufaid Khan, and Omar M. Ali. 2022. "Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites" Polymers 14, no. 2: 242. https://doi.org/10.3390/polym14020242
APA StyleUllah, R., Khan, N., Khattak, R., Khan, M., Khan, M. S., & Ali, O. M. (2022). Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites. Polymers, 14(2), 242. https://doi.org/10.3390/polym14020242