Effect of a Superabsorbent Polymer (Poly-Gamma-Glutamic Acid) on Water and Salt Transport in Saline Soils under the Influence of Multiple Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Soil Sample
2.1.2. Physical and Chemical Properties of γ-PGA
2.2. Experimental Method and Measurement
2.2.1. The Measurement of Soil-Water Retention Curves (SWRC)
2.2.2. Soil Infiltration Experiments under Single Factor Influences
2.2.3. Soil Solute (Calcium Chloride) Transport Experiments
2.3. Evaluation Criteria
2.4. Soil Infiltration Model
HYDRUS-1D Model [36]:
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of γ-PGA on Soil Infiltration Characteristics under a Single Factor
3.1.1. Cumulative Infiltration and Infiltration Rate
3.1.2. Infiltration Parameters
3.1.3. Soil Water Holding Capacity
3.2. Effects of γ-PGA on Soil Infiltration Characteristics under Multi-Factors
3.2.1. Cumulative Infiltration and Infiltration Rate
3.2.2. The Relationship between Wetting Front and Infiltration
3.2.3. Model Validation
3.3. Effects of γ-PGA on Cl−Transport
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heng, T.; Feng, G.; Yang, L.L.; He, X.L.; Yang, G.; Li, F.D.; Xu, X.; Feng, Y. Soil salt balance in a cotton field under drip irrigation and subsurface pipe drainage systems. Agron. J. 2021, 113, 4875–4888. [Google Scholar] [CrossRef]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Xu, H.; Song, J. Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China. Agric. Water Manag. 2022, 266, 107567. [Google Scholar] [CrossRef]
- He, Z.; Gong, K.; Zhang, Z.; Dong, W.; Feng, H.; Yu, Q.; He, J. What is the past, present, and future of scientific research on the Yellow River Basin?—A bibliometric analysis. Agric. Water Manag. 2022, 262, 107404. [Google Scholar] [CrossRef]
- Lan, H.; Peng, J.; Zhu, Y.; Li, L.; Pan, B.; Huang, Q.; Li, J.; Zhang, Q. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin. Sci. China Earth Sci. 2022, 65, 23. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, L.; Zhang, Q.; Wang, J.; Wang, S.; Zhang, M.; Liu, Z. The effects of bio-based superabsorbent polymers on the water/nutrient retention characteristics and agricultural productivity of a saline soil from the Yellow River Basin, China. Agric. Water Manag. 2022, 261, 107388. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, S.; Li, Y.; Riaz, L.; Yu, F.; Yang, Q.; Han, S.; Ma, J. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland. Sci. Total Environ. 2022, 813, 152406. [Google Scholar] [CrossRef]
- Lai, J.; Liu, T.; Luo, Y. Evapotranspiration partitioning for winter wheat with shallow groundwater in the lower reach of the Yellow River Basin. Agric. Water Manag. 2022, 266, 107561. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, J.S.; Yao, R.J.; Gao, S.; Cao, Y.F.; Sun, Y.P. Effects of partial substitution of organic nitrogen for inorganic nitrogen in fertilization on salinity and nitrogen utilization in salinized coastal soil. Chin. J. Eco-Agric. 2019, 27, 441–450. (In Chinese) [Google Scholar]
- Li, Y.; Wang, W.Y.; Wang, Q.J. A breakthrough thought for water saving and salinity control in arid and semi-arid area under film trickle irrigation. Irrig. Drain. 2001, 20, 42–46. (In Chinese) [Google Scholar]
- Guo, J.; Shi, W.; Wang, P.; Hao, Q.; Li, J. Performance characterization of γ-poly (glutamic acid) super absorbent polymer and its effect on soil water availability. Arch. Agron. Soil Sci. 2022, 68, 1145–1158. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Z.; Wang, L.; Sun, Y.; Pei, J.; Wang, J.; Gao, J.; Zhang, L.; Shi, Y. Fate of urea and ammonium sulfate in the plant and soil system as affected by poly-γ-glutamic acid. J. Soil Sci. Plant Nutr. 2022, 22, 2457–2468. [Google Scholar] [CrossRef]
- Xu, Z.; Lei, P.; Feng, X.; Xu, X.; Xu, H.; Yang, H.; Tang, W. Effect of poly(γ-glutamic acid) on microbial community and nitrogen pools of soil. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 657–668. [Google Scholar] [CrossRef]
- Xu, Z.; Wan, C.; Xu, X.; Feng, X.; Xu, H. Effect of poly (γ-glutamic acid) on wheat productivity, nitrogen use efciency and soil microbes. J. Soil Sci. Plant. Nutr. 2013, 13, 744–755. [Google Scholar]
- Zhang, L.; Yang, X.; Gao, D.; Wang, L.; Li, J.; Wei, Z.; Shi, Y. Efects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Sci. Rep. 2017, 7, 6090. [Google Scholar] [CrossRef]
- Wang, X.; Sun, R.; Tian, Y.; Guo, K.; Sun, H.; Liu, X.; Chu, H.; Liu, B. Long term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitmnent. mSystems 2020, 5, e00741-19. [Google Scholar] [CrossRef]
- Yang, Z.H.; Dong, C.D.; Chen, C.W.; Sheu, Y.T.; Kao, C.M. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ. Sci. Pollut. Res. 2018, 25, 5231–5242. [Google Scholar] [CrossRef]
- Peng, Y.P.; Chang, Y.C.; Chen, K.F.; Wang, C.H. A field pilot-scale study on heavy metal contaminated soil washing by using an environmentally friendly agent—poly-r-glutamic acid (r PGA). Environ. Sci. Pollut. Res. 2020, 27, 34760–34769. [Google Scholar] [CrossRef]
- Pang, X.; Lei, P.; Feng, X.; Xu, Z.; Xu, H.; Liu, K. Poly-γ-glutamic acid, a bio-chelator, alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L. seedling. Environ. Sci. Pollut. Res. 2018, 25, 19975–19988. [Google Scholar] [CrossRef]
- Liang, J.; Shi, W.; He, Z.; Pang, L.; Zhang, Y. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of souther Xinjiang, China. Agric. Water Manag. 2019, 218, 48–59. [Google Scholar] [CrossRef]
- Tang, D.; Mao, L.; Zhi, Y.E.; Zhang, J.Z.; Zhou, P.; Chai, X.T. Investigation and canonical correspondence analysis of salinity contents in secondary salinization greenhouse soils in Shanghai suburb. Environ. Sci. 2014, 35, 4705–4711. (In Chinese) [Google Scholar]
- Wu, Q.; Cui, Y.; Li, Q.; Sun, J. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J. Hazard Mater. 2015, 283, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.; Kapoor, R.; Mukerji, K.G. VA mycorrhizal techniques/VAM Technology in establishment of plants under salinity stress conditions. In Techniques in Mycorrhizal Studies; Mukerji, K.G., Manorachari, C., Singh, J., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 313–327. [Google Scholar]
- Song, Y.; Yang, X.; Yang, S.; Wang, J. Transcriptome sequencing and functional analysis of Sedum lineare Thunb. upon salt stress. Mol. Genet. Genom. 2019, 294, 1441–1453. [Google Scholar] [CrossRef]
- Sharda, A.K. Influence of soil bulk density on horizontal water infiltration. Soil Res. 1977, 15, 83–86. [Google Scholar] [CrossRef]
- Wang, H.T. Dynamics of Fluid Flow and Contaminant Transport in Porous Media; Higher Education Press: Beijing, China, 2008; pp. 36–37. [Google Scholar]
- Islam, M.N.; Bell, R.W.; Barrett-Lennard, E.G.; Maniruzzaman, M. Shallow surface and subsurface drains alleviate waterlogging and salinity in a clay-textured soil and improve the yield of sunflower in the Ganges Delta. Agron. Sustain. Dev. 2022, 42, 1–17. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, S.; Ding, R.; Zhao, Q. A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress. Agric. Water Manag. 2021, 255, 107037. [Google Scholar] [CrossRef]
- Zeng, J.; Fei, L.; Chen, L.; Yang, Y. Effects of γ-PGA on soil structure and water-holding characteristics. J. Soil Water Conserv. 2018, 32, 217–224. (In Chinese) [Google Scholar]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; EPA/600/2-91/065 (NTIS 92-119668); Environmental Protection Agency: Washington, DC, USA, 1991. [Google Scholar]
- Karamov, R.; Akhatov, I.; Sergeichev, I.V. Prediction of Fracture Toughness of Pultruded Composites Based on Supervised Machine Learning. Polymers 2022, 14, 3619. [Google Scholar] [CrossRef]
- Yichen, Z.H.U.; Guangming, L.I.U.; Xin, L.I.U.; Feng, P.E.I.; Xu, T.I.A.N.; Chao, S.H.I. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment. J. Chin. Soc. Corros. Prot. 2019, 39, 550–556. (In Chinese) [Google Scholar]
- Philip, J.R. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 1957, 84, 257–264. [Google Scholar] [CrossRef]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variablysaturated Media; Version 3.0. Department of Environmental Sciences; University of California Riverside: Riverside, CA, USA, 2005; 270p. [Google Scholar]
- Guo, J.; Shi, W.; Wen, L.; Shi, X.; Li, J. Effects of a super-absorbent polymer derived from poly-γ-glutamic acid on water infiltration, field water capacity, soil evaporation, and soil water-stable aggregates. Arch. Agron. Soil Sci. 2020, 66, 1627–1638. [Google Scholar] [CrossRef]
- Liang, J.P.; Shi, W.J. Poly-γ-glutamic acid improves water-stable aggregates, nitrogen and phosphorus uptake efficiency, water-fertilizer productivity, and economic benefit in barren desertified soils of Northwest China. Agric. Water Manag. 2021, 245, 106551. [Google Scholar] [CrossRef]
- Shi, X.X.; Shi, W.J.; Pang, L.N.; Wen, L.J.; Gao, Z.Y. Effects of Y-Polyglutamic Acid on Soil Water and Nitrogen Transport Characteristics. J. Soil Water Conserv. 2020, 34, 191–197. (In Chinese) [Google Scholar]
- Huang, Q.Y.; Tang, S.H.; Li, P.; Fu, H.T.; Zhang, M.; Huang, X.; Yi, Q.; Zhang, F.B. Agronomic effects of coating material γ-polyglutamic acid on Chinese flowering cabbage. J. Plant Nutr. Fertil. 2016, 22, 1645–1654. [Google Scholar]
- Bai, W.; Song, J.; Li, M.; Wang, Y.; Wu, Y.; Liu, B.; Wang, C.; Wang, X. Effect of super absorbent polymer on vertical infiltration characteristics of soil water. Trans. Chin. Soc. Agric. Eng. 2009, 25, 18–23. [Google Scholar]
- Green, W.H.; Ampt, G.A. Studies on soil physics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Šimunek, J.; Leij, F.J.; Toride, N.; Šejna, M. STANMOD: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1355–1366. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of biochar and synthetic polymer on the hydro-physical properties of sandy soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.G.; Wu, H.F.; Yang, P.L.; Ding, T.; Xin, X.H.; Sun, M.; Song, H.; Li, Y.Y. Dynamic effects of super absorbent polymer on physical properties and water infiltration of soil. Agric. Res. Arid. Areas 2013, 31, 161–167. [Google Scholar]
The Soil Type | Volume Fraction/% | Median Particle Size | Initial Physical and Chemical Parameters of The Soil | |||||
---|---|---|---|---|---|---|---|---|
Clay | Silt | Sand | D50 | Initial Moisture Content | Saturated Water Content | pH Value | ||
(<0.002 mm) | (≥0.002~0.02 mm) | (≥0.02~2 mm) | (μm) | (cm 3·cm−3) | (cm 3·cm−3) | (g·kg−1) | (-) | |
Sandy Loam | 1.5 | 29.0 | 69.5 | 44.53 | 6.90 | 40.26 | 0.59 44.53 84.13 | 7.93 |
Treatment | Bulk Density | Depth of γ-PGA Application | γ-PGA Content |
---|---|---|---|
(g cm−3) | (cm) | (%) | |
No. 1 | 1.3 | 5–25 | 0.1 |
No. 2 | 1.3 | 15–35 | 0.2 |
No. 3 | 1.3 | 25–45 | 0.3 |
No. 4 | 1.35 | 5–25 | 0.2 |
No. 5 | 1.35 | 15–35 | 0.3 |
No. 6 | 1.35 | 25–45 | 0.1 |
No. 7 | 1.4 | 5–25 | 0.3 |
No. 8 | 1.4 | 15–35 | 0.2 |
No. 9 | 1.4 | 25–45 | 0.1 |
No. 10 | 1.32 | 8–28 | 0.12 |
No. 11 | 1.34 | 13–33 | 0.19 |
No. 12 | 1.38 | 18–38 | 0.28 |
Treatments (γ-PGA Content%) | Parameters of VG Model (Inversed by HYDRUS-1D) | Measured | R2 | RMSE | MAE | ME | ||||
---|---|---|---|---|---|---|---|---|---|---|
Bulk Density | θr (cm3·cm3) | θs (cm3·cm3) | α | n | Ks (cm·min−1) | |||||
CK1 (0%) | 1.30 | 0.031 | 0.40 | 0.0378 | 1.47 | 0.098 | 0.99 | 0.02 | 0.01 | 0.00 |
CK2 (0%) | 1.35 | 0.031 | 0.39 | 0.0369 | 1.48 | 0.085 | 0.99 | 0.02 | 0.02 | 0.00 |
CK3 (0%) | 1.40 | 0.031 | 0.38 | 0.0361 | 1.49 | 0.073 | 0.99 | 0.00 | 0.00 | 0.00 |
0.1% | 1.30 | 0.032 | 0.42 | 0.0384 | 1.42 | 0.095 | 0.99 | 0.01 | 0.00 | 0.00 |
0.2% | 1.30 | 0.032 | 0.43 | 0.0395 | 1.40 | 0.089 | 0.99 | 0.02 | 0.02 | 0.00 |
0.3% | 1.30 | 0.033 | 0.43 | 0.0407 | 1.36 | 0.084 | 0.99 | 0.00 | 0.00 | 0.00 |
0.1% | 1.35 | 0.032 | 0.40 | 0.0372 | 1.45 | 0.080 | 0.99 | 0.02 | 0.01 | 0.00 |
0.2% | 1.35 | 0.032 | 0.42 | 0.0381 | 1.43 | 0.078 | 0.99 | 0.00 | 0.00 | 0.00 |
0.3% | 1.35 | 0.032 | 0.42 | 0.039 | 1.4 | 0.074 | 0.99 | 0.00 | 0.00 | 0.00 |
0.1% | 1.40 | 0.031 | 0.40 | 0.0366 | 1.47 | 0.071 | 0.99 | 0.00 | 0.02 | 0.00 |
0.2% | 1.40 | 0.031 | 0.41 | 0.0370 | 1.43 | 0.069 | 0.99 | 0.00 | 0.00 | 0.00 |
0.3% | 1.40 | 0.031 | 0.42 | 0.0376 | 1.41 | 0.067 | 0.99 | 0.00 | 0.00 | 0.00 |
Bulk Density (g·cm−3) | Parameters | CK (0%) | 0.1% | 0.2% | 0.3% |
---|---|---|---|---|---|
1.30 | A | 0.03 ± 0.006 | 0.02 ± 0.002 | 0.02 ± 0.004 | 0.01 ± 0.003 |
S | 0.45 ± 0.001 | 0.45 ± 0.005 | 0.43 ± 0.001 | 0.41 ± 0.005 | |
SSE | 0.43 | 0.35 | 0.31 | 0.24 | |
RMSE | 0.22 | 0.19 | 0.18 | 0.15 | |
R2 | 1.00 | 0.99 | 0.99 | 0.99 | |
1.35 | A | 0.02 ± 0.002 | 0.02 ± 0.004 | 0.02 ± 0.001 | 0.01 ± 0.002 |
S | 0.41 ± 0.003 | 0.4 ± 0.008 | 0.4 ± 0.007 | 0.38 ± 0.003 | |
SSE | 0.33 | 0.27 | 0.25 | 0.2 | |
RMSE | 0.18 | 0.16 | 0.16 | 0.14 | |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
1.40 | A | 0.02 ± 0.001 | 0.02 ± 0.002 | 0.01 ± 0.004 | 0.01 ± 0.007 |
S | 0.38 ± 0.003 | 0.37 ± 0.006 | 0.37 ± 0.005 | 0.36 ± 0.003 | |
SSE | 0.25 | 0.22 | 0.2 | 0.17 | |
RMSE | 0.16 | 0.15 | 0.14 | 0.13 | |
R2 | 0.99 | 0.99 | 0.99 | 0.99 |
Bulk Density (g·cm−3) | Parameters | Fitting Formula | R2 | SSE | RMSE |
---|---|---|---|---|---|
1.30 | A | 0.99 | 0.038 | 0.021 | |
S | 0.88 | 0.108 | 0.064 | ||
1.35 | A | 0.97 | 0.052 | 0.033 | |
S | 0.86 | 0.103 | 0.072 | ||
1.40 | A | 0.98 | 0.051 | 0.029 | |
S | 0.96 | 0.060 | 0.027 |
Level | Bulk Density (g cm−3) | The Depth of γ-PGA Application (cm) | The Amount of γ-PGA Application (%) |
---|---|---|---|
1 | 18.2 ± 0.760 Aa | 15.2 ± 0.634 Aa | 16.2 ± 1.133 Aa |
2 | 16 ± 0.668 Bb | 16.4 ± 0.689 Bb | 16.0 ± 0.982 Ba |
3 | 13.7 ± 0.572 Cc | 16.5 ± 0.844 Cc | 15.9 ± 1.037 Ba |
Treatment | No. 10 | |||||
---|---|---|---|---|---|---|
Time (min) | Cumulative Infiltration of Formula (16) | Wetting Front Distance of Formula (19) | ||||
Experimental Data (cm) | Calculated Value (cm) | Relative Deviation (%) | Experimental Data (cm) | Calculated Value (cm) | Relative Deviation (%) | |
15 | 2.4 | 2.1 | −13.3 | 8.9 | 8.6 | −3.4 |
20 | 2.7 | 2.5 | −10.4 | 9.9 | 10.0 | 1.4 |
30 | 3.4 | 3.1 | −7.0 | 12.1 | 12.5 | 3.3 |
45 | 4.2 | 4.0 | −4.3 | 15.2 | 15.5 | 2.2 |
60 | 5.0 | 4.8 | −2.9 | 17.0 | 18.1 | 6.7 |
90 | 6.4 | 6.2 | −2.2 | 20.7 | 22.6 | 9.1 |
120 | 7.6 | 7.4 | −2.9 | 25.0 | 26.4 | 5.4 |
150 | 8.9 | 8.5 | −4.2 | 28.3 | 29.7 | 5.1 |
180 | 10.1 | 9.5 | −5.8 | 32.0 | 32.8 | 2.5 |
240 | 12.6 | 11.4 | −9.3 | 40.0 | 38.3 | −4.3 |
300 | 14.1 | 13.1 | −7.2 | 47.0 | 43.2 | −8.1 |
360 | 16.1 | 14.6 | −9.2 | 52.8 | 47.7 | −9.8 |
Treatment | No. 11 | |||||
Time (min) | Cumulative Infiltration of Formula (16) | Wetting Front Distance of Formula (19) | ||||
Experimental Data (cm) | Calculated Value (cm) | Relative Deviation (%) | Experimental Data (cm) | Calculated Value (cm) | Relative Deviation (%) | |
15 | 2.3 | 2.0 | −14.1 | 8.7 | 8.39 | −3.5 |
20 | 2.6 | 2.3 | −11.1 | 9.6 | 9.80 | 2.1 |
30 | 3.2 | 3.0 | −7.5 | 11.8 | 12.20 | 3.4 |
45 | 4.0 | 3.8 | −5.0 | 14.3 | 15.18 | 6.1 |
60 | 4.8 | 4.6 | −4.0 | 16.6 | 17.72 | 6.8 |
90 | 6.1 | 5.9 | −3.8 | 20.1 | 22.05 | 9.7 |
120 | 7.4 | 7.1 | −4.6 | 24.1 | 25.75 | 6.8 |
150 | 8.6 | 8.1 | −6.0 | 27.7 | 29.04 | 4.8 |
180 | 9.8 | 9.1 | −7.5 | 31.6 | 32.04 | 1.4 |
240 | 11.5 | 10.8 | −6.0 | 39.6 | 37.41 | −5.5 |
300 | 12.9 | 12.4 | −3.4 | 45 | 42.19 | −6.2 |
360 | 13.8 | 13.9 | 1.2 | 50.6 | 46.6 | −8.0 |
Treatment | No. 12 | |||||
Time/min | Cumulative Infiltration of Formula (16) | Wetting Front Distance of Formula (19) | ||||
Experimental Data (cm) | Calculated Value (cm) | Relative Deviation (%) | Experimental Data (cm) | Calculated Value (cm) | Relative Deviation (%) | |
15 | 2.1 | 1.8 | −12.5 | 8.2 | 7.84 | −4.4 |
20 | 2.4 | 2.2 | −9.3 | 9.4 | 9.2 | −2.6 |
30 | 3.0 | 2.8 | −5.5 | 11.5 | 11.4 | −1.3 |
45 | 3.7 | 3.6 | −2.8 | 13.9 | 14.2 | 2.0 |
60 | 4.4 | 4.3 | −1.5 | 15.8 | 16.6 | 4.8 |
90 | 5.6 | 5.5 | −1.2 | 19.6 | 20.6 | 5.1 |
120 | 6.7 | 6.6 | −2.0 | 23.2 | 24.1 | 3.7 |
150 | 7.8 | 7.6 | −3.3 | 26.4 | 27.1 | 2.8 |
180 | 8.9 | 8.5 | −4.8 | 29.8 | 29.9 | 0.4 |
240 | 10.9 | 10.1 | −7.4 | 35.2 | 35.0 | −0.7 |
300 | 12.4 | 11.6 | −6.4 | 41.6 | 39.4 | −5.3 |
360 | 13.0 | 13.0 | 0.4 | 48.2 | 43.5 | −9.8 |
γ-PGA (%) | t0 | t1 | R | λ cm−1 | v | D | R2 |
---|---|---|---|---|---|---|---|
min | min | cm·min−1 | cm2·min−1 | ||||
CK (0) | 304.3 | 507.1 | 0.74 | 0.45 | 0.03 | 0.02 | 0.99 |
0.1 | 358.0 | 716.0 | 0.81 | 0.35 | 0.03 | 0.01 | 0.99 |
0.2 | 494.4 | 1236.0 | 0.86 | 0.62 | 0.03 | 0.02 | 0.99 |
0.3 | 562.8 | 1407.0 | 0.80 | 0.77 | 0.03 | 0.02 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Wang, S.; Gao, S.; Wang, S.; Gao, Z.; He, Z. Effect of a Superabsorbent Polymer (Poly-Gamma-Glutamic Acid) on Water and Salt Transport in Saline Soils under the Influence of Multiple Factors. Polymers 2022, 14, 4056. https://doi.org/10.3390/polym14194056
Fu Y, Wang S, Gao S, Wang S, Gao Z, He Z. Effect of a Superabsorbent Polymer (Poly-Gamma-Glutamic Acid) on Water and Salt Transport in Saline Soils under the Influence of Multiple Factors. Polymers. 2022; 14(19):4056. https://doi.org/10.3390/polym14194056
Chicago/Turabian StyleFu, Yuliang, Shunsheng Wang, Shikai Gao, Songlin Wang, Zhikai Gao, and Zhenjia He. 2022. "Effect of a Superabsorbent Polymer (Poly-Gamma-Glutamic Acid) on Water and Salt Transport in Saline Soils under the Influence of Multiple Factors" Polymers 14, no. 19: 4056. https://doi.org/10.3390/polym14194056
APA StyleFu, Y., Wang, S., Gao, S., Wang, S., Gao, Z., & He, Z. (2022). Effect of a Superabsorbent Polymer (Poly-Gamma-Glutamic Acid) on Water and Salt Transport in Saline Soils under the Influence of Multiple Factors. Polymers, 14(19), 4056. https://doi.org/10.3390/polym14194056