Enhanced Antibacterial Performance of Chitosan/Corn Starch Films Containing TiO2/Graphene for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CTS/CSH Films
2.3. Preparation of CTS/CSH/TiO2/Gr Composite Films
2.4. Dispersion Stability Testing
2.5. Scanning Electron Microscopy (SEM) Observations
2.6. Fourier Transform Infrared (FTIR) Spectroscopy Studies
2.7. XRD Analysis
2.8. DSC Analysis
2.9. Density measurement
2.10. WVP Measurements
2.11. Mechanical Properties
2.12. Water Contact Angle (WCA), Moisture Content (MC), and Water Solubility (WS) Studies
2.13. Light Transmittance and Surface Color
2.14. Oxygen Resistance
2.15. Antibacterial Properties
2.16. Statistical Analysis
3. Results and Discussion
3.1. Dispersibility of Nanofillers in Film Precursor Solutions
3.2. Morphology of Composite Films
3.3. FTIR Studies
3.4. XRD Analysis
3.5. DSC Analysis
3.6. WVP
3.7. Thickness and Density
3.8. Mechanical Properties
3.9. Water Contact Angle (WCA), MC, and WS
3.10. Surface Color Measurements
3.11. Visible and UV Transmittances
3.12. Oxygen Resistance
3.13. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, K.; Zhang, J.; Yang, F.; Wang, W.; Li, W.; Qin, C. Properties and biological activity of chitosan-coix seed starch films incorporated with nano zinc oxide and Artemisia annua essential oil for pork preservation. LWT 2022, 164, 113665. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Qin, W.; Dai, J.; Zhang, Q.; Lee, K.J.; Liu, Y. Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Mater. Des. 2020, 185, 108277. [Google Scholar] [CrossRef]
- Zheng, K.; Xiao, S.; Li, W.; Wang, W.; Chen, H.; Yang, F.; Qin, C. Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromol. 2019, 135, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.K.; Sadeghi, K.; Seo, J. Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag. Shelf Life 2022, 33, 100904. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials 2020, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, G.; Wang, Y.; Zhao, Y.; Su, H.; Tan, T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 2017, 169, 101–107. [Google Scholar] [CrossRef]
- Giofrè, S.V.; Tiecco, M.; Celesti, C.; Patanè, S.; Triolo, C.; Gulino, A.; Spitaleri, L.; Scalese, S.; Scuderi, M.; Iannazzo, D. Eco-friendly 1,3-dipolar cycloaddition reactions on graphene quantum dots in natural deep eutectic solvent. Nanomaterials 2020, 10, 2549. [Google Scholar] [CrossRef]
- Tuccitto, N.; Spitaleri, L.; Li Destri, G.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular sensing of a chemical warfare agents simulant by functionalized carbon nanoparticles. Molecules 2020, 25, 5731. [Google Scholar] [CrossRef]
- Gonzalez, K.; Garcia-Astrain, C.; Santamaria-Echart, A.; Ugarte, L.; Averous, L.; Eceiza, A.; Gabilondo, N. Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydr. Polym. 2018, 202, 372–381. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Q.; Wang, J.; Yu, J. Effect of ultrasonic vibration on tribological behavior of carbon-carbon composite. Tribol. Int. 2019, 136, 469–474. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Fang, F. Fabrication of high-performance nickel/graphene oxide composite coatings using ultrasonic-assisted electrodeposition. Ultrason. Sonochem. 2020, 62, 104858. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Monje, A.; Zitzumbo-Guzmán, R.; Bañuelos-Díaz, J.A.; Zaragoza-Contreras, E.A. Ultrasonic dispersion and activation of TiO2 nanoparticles and its effect on bacterial inhibition in EVA films. Mater. Chem. Phys. 2019, 235, 121760. [Google Scholar] [CrossRef]
- Fonseca-García, A.; JavierJiménez-Regalado, E.; Aguirre-Loredo, R.Y. Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydr. Polym. 2021, 251, 117009. [Google Scholar] [CrossRef]
- ASTM E96/E96M-10; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials. ASTM International: West Conshohocken, PA, USA, 2013. Available online: https://www.astm.org/e0096_e0096m-10.html (accessed on 20 February 2013).
- Wang, D.; Xuan, L.; Han, G.; Wong, A.H.H.; Wang, Q.; Cheng, W. Preparation and characterization of foamed wheat straw fiber/polypropylene composites based on modified nano-TiO2 particles. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105674. [Google Scholar] [CrossRef]
- ASTM D5026-15; Standard Test Method for Plastics: Dynamic Mechanical Properties: In Tension. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://www.astm.org/d5026-15.html (accessed on 27 December 2016).
- Zhang, R.; Wang, Y.; Ma, D.; Ahmed, S.; Qin, W.; Liu, Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrason. Sonochem. 2019, 59, 104731. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Yong, H.; Qin, Y.; Liu, J.; Liu, J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 2019, 94, 80–92. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Liu, F.; Ren, F.; Zhao, G.; Leng, X. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocoll. 2011, 25, 1098–1104. [Google Scholar] [CrossRef]
- Panda, P.K.; Yang, J.M.; Chang, Y.H. Preparation and characterization of ferulic acid-modified water soluble chitosan and poly (γ-glutamic acid) polyelectrolyte films through layer-by-layer assembly towards protein adsorption. Int. J. Biol. Macromol. 2021, 171, 457–464. [Google Scholar] [CrossRef]
- Gulino, A.; Papanikolaou, G.; Lanzafame, P.; Aaliti, A.; Primerano, P.; Spitaleri, L.; Triolo, C.; Dahrouch, Z.; Khaskhoussi, A.; Schiavo, S.L. Synthesis, Characterization and photocatalytic behavior of SiO2@nitrized-TiO2 nanocomposites obtained by a straightforward novel approach. ChemistryOpen 2021, 10, 1033–1040. [Google Scholar] [CrossRef]
- Panda, P.K.; Dash, P.; Yang, J.M.; Chang, Y.H. Development of chitosan, graphene oxide, and cerium oxide composite blended films: Structural, physical, and functional properties. Cellulose 2022, 29, 2399–2411. [Google Scholar] [CrossRef]
- Abral, H.; Basri, A.; Muhammad, F.; Fernando, Y.; Hafizulhaq, F.; Mahardika, M.; Sugiarti, E.; Sapuan, S.M.; Ilyas, R.A.; Stephane, I. A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocoll. 2019, 93, 276–283. [Google Scholar] [CrossRef]
- Chen, L.; Yang, S.; Mu, L.; Ma, P.C. Three-dimensional titanium dioxide/graphene hybrids with improved performance for photocatalysis and energy storage. J. Colloid Interface Sci. 2018, 512, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.; Garcia, M.A.; Villar, M.A.; Gentili, A.; Rodriguez, M.S.; Albertengo, L. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Sci. Technol. 2014, 57, 106–115. [Google Scholar] [CrossRef]
- Dash, P.; Yang, J.M.; Lin, H.; Lin, A.S. Preparation and characterization of zinc gallate phosphor for electrochemical luminescence. J. Lumin. 2020, 228, 117593. [Google Scholar] [CrossRef]
- Hasan, M.; Gopakumar, D.A.; Olaiya, N.G.; Zarlaida, F.; Alfian, A.; Aprinasari, C.; Alfatah, T.; Rizal, S.; Khalil, H. Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. Int. J. Biol. Macromol. 2020, 156, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, J.C.M.; Miki, K.S.L.; da Silva, R.A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [Google Scholar] [CrossRef]
- Meng, W.; Shi, J.; Zhang, X.; Lian, H.; Wang, Q.; Peng, Y. Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films. Int. J. Biol. Macromol. 2020, 152, 137–146. [Google Scholar] [CrossRef]
- Hasan, M.; Rusman, R.; Khaldun, I.; Ardana, L.; Mudatsir, M.; Fansuri, H. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int. J. Biol. Macromol. 2020, 163, 766–775. [Google Scholar] [CrossRef]
- Kochkina, N.E.; Butikova, O.A. Effect of fibrous TiO2 filler on the structural, mechanical, barrier and optical characteristics of biodegradable maize starch/PVA composite films. Int. J. Biol. Macromol. 2019, 139, 431–439. [Google Scholar] [CrossRef]
- Yousefi, A.R.; Savadkoohi, B.; Zahedi, Y.; Hatami, M.; Ako, K. Fabrication and characterization of hybrid sodium montmorillonite/TiO2 reinforced cross-linked wheat starch-based nanocomposites. Int. J. Biol. Macromol. 2019, 131, 253–263. [Google Scholar] [CrossRef]
- Bouakaz, B.S.; Habi, A.; Grohens, Y.; Pillin, I. Organomontmorillonite/graphene-PLA/PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend. Appl. Clay Sci. 2017, 139, 81–91. [Google Scholar] [CrossRef]
- Wang, D.; Lv, R.; Ma, X.; Zou, M.; Wang, W.; Yan, L.; Ding, T.; Ye, X.; Liu, D. Lysozyme immobilization on the calcium alginate film under sonication: Development of an antimicrobial film. Food Hydrocoll. 2018, 83, 1–8. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Shi, Y.; Miao, J.; Xia, R.; Su, L.; Qian, J.; Chen, P.; Zhang, Q.; Liu, J. Evaluation of rheological and thermal properties of polyvinylidene fluoride (PVDF)/graphene nanoplatelets (GNP) composites. Polym. Test. 2018, 67, 122–135. [Google Scholar] [CrossRef]
- Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi, D.; Handayani; Sapuan, S.M.; Ilyas, R.A. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J. Mater. Res. Technol. 2020, 9, 2477–2486. [Google Scholar] [CrossRef]
- Li, T.; Yan, M.; Zhong, Y.; Ren, H.; Lou, C.; Huang, S.; Lin, J. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. J. Mater. Res. Technol. 2019, 8, 5124–5132. [Google Scholar] [CrossRef]
- Han, Y.; Chen, S.; Yang, M.; Zou, H.; Zhang, Y. Inorganic matter modified water-based copolymer prepared by chitosan-starch-CMC-Na-PVAL as an environment-friendly coating material. Carbohydr. Polym. 2020, 234, 115925. [Google Scholar] [CrossRef]
- Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int. J. Biol. Macromol. 2018, 109, 1311–1318. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. Ultrason. Sonochem. 2019, 51, 386–394. [Google Scholar] [CrossRef]
- Tahergorabi, R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Effect of isoelectric solubilization/precipitation and titanium dioxide on whitening and texture of proteins recovered from dark chicken-meat processing by-products. LWT-Food Sci. Technol. 2011, 44, 896–903. [Google Scholar] [CrossRef]
- Borah, P.P.; Das, P.; Badwaik, L.S. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrason. Sonochem. 2017, 36, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Ciampaglia, R.; Arnold, N.A.; Piozzi, F.; Napolitano, F.; Rigano, D.; Senatore, F. Antimicrobial and antioxidant properties of the essential oil of Salvia lanigera from Cyprus. Food Chem. Toxicol. 2010, 49, 238–243. [Google Scholar] [CrossRef] [PubMed]
- El-Shafai, N.M.; El-Khouly, M.E.; El-Kemary, M.; Ramadan, M.S.; Derbalah, A.S.; Masoud, M.S. Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. J. Ind. Eng. Chem. 2019, 69, 315–323. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Kaewklin, P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll. 2018, 84, 125–134. [Google Scholar] [CrossRef]
- Xie, J.; Hung, Y. UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. LWT 2018, 96, 307–314. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, L.; Zhu, H.; Liu, X. Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact. Mater. 2018, 3, 341–346. [Google Scholar] [CrossRef]
- Rodríguez-Tobías, H.; Morales, G.; Grande, D. Improvement of mechanical properties and antibacterial activity of electrospun poly(d,l-lactide)-based mats by incorporation of ZnO-graft-poly(d,l-lactide) nanoparticles. Mater. Chem. Phys. 2016, 182, 324–331. [Google Scholar] [CrossRef]
Samples | Ultrasonic Powers (W) | Zeta Potential (mV) |
---|---|---|
CTS/CSH | 160 | −27.33 ± 0.88 a |
CTS/CSH/TiO2 | 160 | −14.33 ± 0.45 c |
9:1 | 160 | −10.31 ± 0.13 de |
8:2 | 160 | −13.27 ± 0.69 cd |
7:3 | 160 | −15.27 ± 0.93 c |
5:5 | 160 | −16.26 ± 0.26 bc |
6:4 | 0 | −8.40 ± 0.22 e |
6:4 | 80 | −12.67 ± 2.52 cd |
6:4 | 120 | −15.20 ± 1.16 c |
6:4 | 160 | −19.76 ± 2.28 b |
6:4 | 200 | −19.73 ± 1.31 b |
Samples | To (°C) | Tm (°C) | Melting Enthalpy (∆Hm, J/g) |
---|---|---|---|
CTS/CH | 77.80 | 111.51 | 92.44 |
CTS/CH/TiO2 | 75.50 | 108.53 | 114.20 |
CTS/CH/TiO2/Gr | 83.32 | 119.50 | 296.48 |
Ultrasonic Powers (W) | Samples | |||||||
---|---|---|---|---|---|---|---|---|
CTS/CH | 10:0 | 9:1 | 8:2 | 7:3 | 6:4 | 5:5 | ||
L | 0 | 86.54 ± 0.03 Aa | 87.78 ± 0.04 Ba | 59.40 ± 0.35 Cabc | 46.58 ± 0.83 Da | 41.40 ± 0.09 Ea | 43.54 ± 0.23 Fa | 30.79 ± 0.01 Ga |
80 | 86.53 ± 0.01 Aa | 87.50 ± 0.33 Aa | 61.03 ± 0.32 Ba | 47.05 ± 0.64 Ca | 41.60 ± 0.81 Da | 38.90 ± 0.93 Eb | 34.48 ± 0.27 Fb | |
120 | 86.70 ± 0.05 Aab | 87.91 ± 0.01 Ba | 58.27 ± 0.07 Cbc | 46.08 ± 0.16 Da | 41.49 ± 0.12 Ea | 39.19 ± 0.04 Fb | 39.73 ± 0.55 Fd | |
160 | 87.11 ± 0.12 Ab | 88.01 ± 0.01 Aa | 57.97 ± 0.97 Bc | 46.78 ± 0.45 Ca | 41.73 ± 0.10 DEa | 40.30 ± 0.09 Eb | 42.73 ± 0.04 De | |
200 | 86.76 ± 0.22 Aab | 87.88 ± 0.02 Aa | 59.98 ± 0.45 Bab | 46.91 ± 0.83 Ca | 41.42 ± 0.05 Da | 30.40 ± 0.07 Ec | 38.71 ± 0.05 Fc | |
a | 0 | 3.34 ± 0.00 Aa | 1.98 ± 0.00 Ba | 1.04 ± 0.08 Cabc | 0.64 ± 0.18 Da | 0.66 ± 0.01 Da | 1.48 ± 0.05 Ca | 1.23 ± 0.01 CDa |
80 | 3.51 ± 0.01 Ab | 2.11 ± 0.03 Bcd | 1.32 ± 0.06 Cc | 0.75 ± 0.15 DEa | 0.65 ± 0.15 Ea | 0.79 ± 0.02 DEd | 1.10 ± 006 CDb | |
120 | 3.42 ± 0.02 Ac | 2.05 ± 0.01 Bb | 0.81 ± 0.01 Dab | 0.57 ± 0.04 Ea | 0.74 ± 0.04 Da | 0.87 ± 0.01 Dcd | 1.23 ± 0.07 Ca | |
160 | 3.40 ± 0.01 Ac | 2.06 ± 0.01 Abc | 0.70 ± 0.19 Da | 0.80 ± 0.08 Da | 0.72 ± 0.04 Da | 1.15 ± 0.02 Cb | 1.61 ± 0.01 Bc | |
200 | 3.45 ± 0.02 Ac | 2.14 ± 0.01 Ad | 1.13 ± 0.09 Bbc | 0.72 ± 0.15 Ca | 0.67 ± 0.04 Ca | 0.91 ± 0.02 BCc | 1.04 ± 0.00 Bb | |
b | 0 | 2.11 ± 0.12 Aa | 5.41 ± 0.31 Ba | 2.48 ± 0.09 Cab | 1.18 ± 0.37 Da | 1.11 ± 0.01 Da | 1.17 ± 0.07 Da | 3.01 ± 0.02 Ca |
80 | 2.05 ± 0.05 Aa | 4.85 ± 0.21 Bab | 2.78 ± 0.06 Cb | 1.39 ± 0.28 Da | 1.16 ± 0.35 Ea | 1.77 ± 0.05 Db | 2.80 ± 0.10 Cab | |
120 | 1.94 ± 0.06 Aa | 4.73 ± 0.06 Bb | 2.32 ± 0.02 Cab | 0.97 ± 0.07 Da | 1.26 ± 0.08 Ea | 1.90 ± 0.00 Fbc | 3.06 ± 0.12 Ga | |
160 | 1.92 ± 0.21 Aa | 4.50 ± 0.06 Bbc | 2.06 ± 0.28 CDa | 1.42 ± 0.16 Ea | 1.27 ± 0.05 Ea | 2.41 ± 0.03 Cd | 1.69 ± 0.02 DEc | |
200 | 1.86 ± 0.04 Aa | 3.96 ± 0.04 Bc | 2.55 ± 0.09 Cab | 1.28 ± 0.34 Ea | 1.11 ± 0.10 Ea | 1.97 ± 0.01 Dc | 2.68 ± 0.03 Cd | |
ΔE | 0 | 2.47 ± 0.32 Aa | 5.97 ± 0.44 Ba | 26.30 ± 0.35 Cabc | 39.03 ± 0.83 Da | 44.20 ± 0.09 ea | 42.03 ± 0.23 Fa | 45.86 ± 0.01 Ga |
80 | 2.33 ± 0.06 Aa | 5.18 ± 0.07 Bb | 24.69 ± 0.32 Ca | 38.56 ± 0.64 Da | 44.01 ± 0.81 ea | 45.71 ± 1.01 efb | 47.16 ± 0.28 Fb | |
120 | 2.20 ± 0.08 Aa | 5.24 ± 0.06 Bab | 27.43 ± 0.07 Cbc | 39.53 ± 0.16 Da | 44.10 ± 0.12 ea | 46.44 ± 0.02 fb | 45.93 ± 0.54 Fac | |
160 | 2.25 ± 0.17 Aa | 5.04 ± 0.00 Bb | 27.72 ± 0.96 Cc | 38.84 ± 0.45 Da | 43.87 ± 0.11 EFa | 45.32 ± 0.09 fb | 42.85 ± 0.04 Ed | |
200 | 2.13 ± 0.02 Aa | 4.56 ± 0.03 Bb | 25.73 ± 0.44 Cab | 38.70 ± 0.83 Da | 44.18 ± 0.04 Ea | 46.20 ± 0.07 fb | 46.92 ± 0.05 Fbc |
Light Transmittance (%) | Ultrasonic Powers (W) | Samples | ||||||
---|---|---|---|---|---|---|---|---|
CTS/CSH | 10:0 | 9:1 | 8:2 | 7:3 | 6:4 | 5:5 | ||
280 nm | 0 | 75.64 ± 1.42 Aa | 1.32 ± 0.00 Cb | 1.84 ± 0.02 Ca | 1.95 ± 0.24 Ca | 2.32 ± 0.60 Ca | 4.21 ± 0.92 Ba | 4.84 ± 0.37 Ba |
80 | 75.24 ± 0.40 Aa | 1.28 ± 0.06 Cb | 1.68± 0.09 Cab | 1.82 ± 0.26 Ca | 2.23 ± 0.34 Ca | 3.89 ± 0.20 Ba | 4.50 ± 0.59 Ba | |
120 | 74.89 ± 2.04 Aa | 1.22 ± 0.02 Cbc | 1.55± 0.02 Cbc | 1.61 ± 0.19 Ca | 2.06 ± 0.27 Ca | 3.61 ± 0.43 Ba | 4.47 ± 0.35 Ba | |
160 | 74.42 ± 1.57 Aa | 1.05 ± 0.10 Cc | 1.42 ± 0.02 Cc | 1.47 ± 0.04 Ca | 1.80 ± 0.24 Ca | 3.42 ± 0.58 Ba | 4.37± 0.40 Ba | |
200 | 75.98 ± 0.63 Aa | 1.63 ± 0.06 Ca | 1.72 ± 0.05 Cab | 1.79 ± 0.12 Ca | 2.63 ± 0.45 Ca | 4.00 ± 0.36 Ba | 4.57 ± 0.65 Ba | |
300 nm | 0 | 85.97 ± 0.96 Aa | 4.24 ± 0.11 Fa | 9.92 ± 0.24 Ea | 16.94 ± 0.09 Da | 27.76 ± 1.04 Ca | 34.15 ± 1.50 Ba | 38.70 ± 3.63 Ba |
80 | 85.83 ± 1.11 Aa | 3.91 ± 0.09 Fb | 9.45 ± 0.20 Eab | 16.45 ± 0.74 Da | 27.55 ± 0.84 Ca | 33.94 ± 1.62 Ba | 38.35 ± 2.47 Ba | |
120 | 85.19 ± 1.39 Aa | 3.63 ± 0.05 Gc | 9.30 ± 0.18 Fab | 16.10 ± 0.40 Ea | 27.36 ± 0.95 Da | 33.21 ± 1.04 Ca | 38.06 ± 1.60 Ba | |
160 | 84.72 ± 0.50 Aa | 3.54 ± 0.10 Fc | 8.76 ± 0.13 Eb | 15.55 ± 0.56 Da | 27.32 ± 1.20 Ca | 32.52 ± 0.83 Ba | 37.33 ± 2.06 Ba | |
200 | 85.42 ± 0.66 Aa | 4.34 ± 0.04 Fa | 9.70 ± 0.24 Ea | 16.48 ± 0.83 Da | 27.42 ± 1.17 Ca | 33.91 ± 1.21 Ba | 37.88 ± 2.30 Ba | |
400 nm | 0 | 78.57 ± 2.34 Aa | 0.36 ± 0.01 Ca | 0.55 ± 0.03 Ca | 0.57 ± 0.00 Ca | 0.97 ± 0.23 Ba | 1.02 ± 0.08 Ba | 1.15 ± 0.05 Bab |
80 | 77.98 ± 0.42 Aa | 0.21 ± 0.00 Cb | 0.44 ± 0.06 Cab | 0.57 ± 0.04 BCa | 0.84 ± 0.14 Ba | 0.42 ± 0.02 Cb | 0.83 ± 0.20 Bb | |
120 | 77.48 ± 0.73 Aa | 0.13 ± 0.01 DEc | 0.28 ± 0.07 CDEbc | 0.05 ± 0.04 Ec | 0.53 ± 0.08 Cab | 0.35 ± 0.02 CDb | 0.84 ± 0.16 Bb | |
160 | 76.75 ± 1.74 Aa | 0.03 ± 0.00 Cd | 0.16 ± 0.00 Cc | 0.02 ± 0.02 Cc | 0.23 ± 0.03 Cc | 0.13 ± 0.00 Cc | 0.81 ± 0.15 Bb | |
200 | 77.23 ± 0.29 Aa | 0.25 ± 0.04 Cb | 0.36 ± 0.02 Cb | 0.31 ± 0.00 Cb | 0.52 ± 0.03 Cab | 0.41 ± 0.10 Cb | 1.70 ± 0.20 Ba | |
600 nm | 0 | 81.60 ± 0.70 Aa | 1.42 ± 0.09 Bb | 1.80 ± 0.12 Ba | 1.16 ± 0.22 Ba | 0.97 ± 0.11 Ba | 0.95 ± 0.06 Ba | 0.71 ± 0.13 Ba |
80 | 81.52 ± 1.55 Aa | 1.27 ± 0.05 BCbc | 1.57 ± 0.10 Ba | 1.11 ± 0.26 Ca | 0.86 ± 0.07 Ca | 0.88 ± 0.09 Ca | 0.32 ± 0.05 Db | |
120 | 80.60 ± 1.38 Aa | 1.20 ± 0.01 Bbc | 0.98 ± 0.06 Cb | 0.05 ± 0.01 Eb | 0.55 ± 0.05 Db | 0.71 ± 0.11 Dab | 0.65 ± 0.02 Da | |
160 | 80.12 ± 0.84 Aa | 1.08 ± 0.04 Bc | 0.38 ± 0.02 Dc | 0.01 ± 0.00 Fb | 0.25 ± 0.01 Ec | 0.59 ± 0.02 Cb | 0.30 ± 0.01 Eb | |
200 | 80.71 ± 3.04 Aa | 3.25 ± 0.15 Ba | 0.88 ± 0.11 Cb | 0.55 ± 0.05 DEb | 0.77 ± 0.05 CDab | 0.26 ± 0.00 Ec | 0.40 ± 0.03 Eb | |
800 nm | 0 | 82.27 ± 0.58 Aa | 2.33 ± 0.13 Cb | 3.15 ± 0.32 Ba | 2.31 ± 0.31 Ca | 1.63 ± 0.10 CDa | 1.56 ± 0.30 CDa | 1.24 ± 0.10 Da |
80 | 81.52 ± 0.03 Aa | 2.20 ± 0.10 BCbc | 1.83 ± 0.15 BCb | 2.24 ± 0.18 Ba | 1.58 ± 0.04 Cab | 1.67 ± 0.32 BCa | 0.62 ± 0.07 Db | |
120 | 81.55 ± 1.20 Aa | 1.95 ± 0.06 Bcd | 1.65 ± 0.12 BCb | 0.10 ± 0.01 Ec | 0.92 ± 0.00 Dc | 1.39 ± 0.26 Cab | 0.55 ± 0.05 Db | |
160 | 81.12 ± 0.36 Aa | 1.60 ± 0.06 Bd | 0.68 ± 0.07 Dc | 0.02 ± 0.00 Ec | 0.45 ± 0.02 Dd | 1.13 ± 0.18 Cab | 0.56 ± 0.02 Db | |
200 | 81.71 ± 1.45 Aa | 6.63 ± 0.21 Da | 3.64 ± 0.28 Ca | 1.14 ± 0.39 Eb | 1.32 ± 0.14 Eb | 0.52 ± 0.02 Eb | 0.79 ± 0.05 Eb |
Samples | Ultrasonic Powers (W) | PV/g· (100 g)−1 |
---|---|---|
PE | - | 22.99 ± 0.24 b |
CTS/CSH | 160 | 23.80 ± 0.03 a |
CTS/CSH/TiO2 | 160 | 18.79 ± 0.26 c |
9:1 | 160 | 18.08 ± 0.38 c |
8:2 | 160 | 16.98 ± 0.18 d |
7:3 | 160 | 16.74 ± 0.01 d |
5:5 | 160 | 16.55 ± 0.08 d |
6:4 | 0 | 16.91 ± 0.10 d |
6:4 | 80 | 16.73 ± 0.17 d |
6:4 | 120 | 16.61 ± 0.41 d |
6:4 | 160 | 16.48 ± 0.13 d |
6:4 | 200 | 16.56 ± 0.04 d |
Samples | Growth Inhibition (%) | |
---|---|---|
E. coli | S. aureus | |
CSH | 25.34 ± 0.20 d | 20.21 ± 4.61 b |
CTS/CSH | 74.67 ± 1.50 d | 70.74 ± 3.63 b |
CTS/CSH/TiO2 | 98.50 ± 0.50 a | 99.80 ± 0.20 a |
CTS/CSH/TiO2/Gr | 90.33 ± 0.72 c | 95.33 ± 1.02 a |
CTS/CSH/TiO2/Gr-80 | 90.67 ± 1.16 c | 97.59 ± 0.84 a |
CTS/CSH/TiO2/Gr-120 | 94.12 ± 0.35 b | 98.34 ± 0.66 a |
CTS/CSH/TiO2/Gr-160 | 96.67 ± 0.09 b | 99.85 ± 0.13 a |
CTS/CSH/TiO2/Gr-200 | 96.33 ± 0.10 b | 99.67 ± 0.12 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, X. Enhanced Antibacterial Performance of Chitosan/Corn Starch Films Containing TiO2/Graphene for Food Packaging. Polymers 2022, 14, 3844. https://doi.org/10.3390/polym14183844
Liu Z, Liu X. Enhanced Antibacterial Performance of Chitosan/Corn Starch Films Containing TiO2/Graphene for Food Packaging. Polymers. 2022; 14(18):3844. https://doi.org/10.3390/polym14183844
Chicago/Turabian StyleLiu, Zhiyuan, and Xueqin Liu. 2022. "Enhanced Antibacterial Performance of Chitosan/Corn Starch Films Containing TiO2/Graphene for Food Packaging" Polymers 14, no. 18: 3844. https://doi.org/10.3390/polym14183844
APA StyleLiu, Z., & Liu, X. (2022). Enhanced Antibacterial Performance of Chitosan/Corn Starch Films Containing TiO2/Graphene for Food Packaging. Polymers, 14(18), 3844. https://doi.org/10.3390/polym14183844