Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Radiation Exposure
2.3. Characterization
3. Results and Discussion
3.1. Influence on the Damping-Strain Relation
3.2. Influence on the Damping-Magnetic-Field Relation
3.3. Influence on the Damping Propertywith Constant Strain and Constant Magnetic Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, Y.; Dong, X.; Qi, M. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers. Soft Matter 2018, 14, 3504–3509. [Google Scholar] [CrossRef]
- Yu, M.; Qi, S.; Fu, J.; Zhu, M.; Chen, D. Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos. Sci. Technol. 2017, 139, 36–46. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, S.; Bae, S.; Kim, N.; Yun, J.; Jung, J.; Kim, Y. Effect of cyclic shear fatigue under magnetic field on naturalrubber composite as anisotropic magnetorheological elastomers. Polymers 2022, 14, 1927. [Google Scholar] [CrossRef] [PubMed]
- Testa, P.; Style, R.W.; Cui, J.; Donnelly, C.; Borisova, E.; Derlet, P.M.; Dufresne, E.R.; Heyderman, L.J. Magnetically Addressable Shape-Memory and Stiffening in a Composite Elastomer. Adv. Mater. 2019, 31, 1900561. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Dong, X.; Qi, M. Payne effect and damping properties of flower-like cobalt particles-based magnetorheological elastomers. Compos. Commun. 2019, 15, 120–128. [Google Scholar] [CrossRef]
- Cao, X.; Xuan, S.H.; Li, J.; Li, Z.; Hu, T.; Liang, H.; Ding, L.; Li, B.; Gong, X.L. Magnetic-tunable sound absorber based on micro-perforated magnetorheological elastomer. Smart Mater. Struct. 2019, 29, 015024. [Google Scholar] [CrossRef]
- Linn, L.; Danas, K.; Bodelot, L. Towards 4D Printing of Very Soft Heterogeneous Magnetoactive Layers for Morphing Surface Applications via Liquid Additive Manufacturing. Polymers 2022, 14, 1684. [Google Scholar] [CrossRef]
- Liao, G.J.; Xu, Y.; Wei, F.; Ge, R.; Wan, Q. Investigation on the phase-based fuzzy logic controller for magnetorheological elastomer vibration absorber. J. Intell. Mater. Syst. Struct. 2017, 28, 728–739. [Google Scholar] [CrossRef]
- Chen, D.; Yu, M.; Zhu, M.; Qi, S.; Fu, J. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application. Smart Mater. Struct. 2016, 25, 115005. [Google Scholar] [CrossRef]
- Liu, S.; Feng, L.; Zhao, D.; Shi, X.; Zhang, Y.; Jiang, J.; Zhao, Y.; Zhang, C.; Chen, L. A real-time controllable electromagnetic vibration isolator based on magnetorheological elastomer with quasi-zero stiffness characteristic. Smart Mater. Struct. 2019, 28, 085037. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Tian, T.; Li, W. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control Smart Materials and Structures. Smart. Mater. Struct. 2013, 22, 095020. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, Y.; Deng, H.X.; Zhao, C.Y.; Zhang, Y.A.; Liang, H.Y.; Gong, X.L. Bio-inspired bianisotropic magneto-sensitive elastomers with excellent multimodal transformation. ACS Appl. Mater. Interfaces 2022, 14, 20101–20112. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Xuan, S.H.; Ding, L.; Gong, X.L. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Des. 2018, 156, 528–537. [Google Scholar] [CrossRef]
- Yun, G. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1300. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Guo, H.; Chen, J.; Fu, J.; Hu, C.; Yu, M.; Wang, Z.L. Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale 2018, 10, 4745. [Google Scholar] [CrossRef] [PubMed]
- Skfivan, V.; Sodomka, O.; Mach, F. Magnetically Guided Soft Robotic Grippers. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics, Seoul, Korea, 14–18 April 2019. [Google Scholar]
- Fan, Y.C.; Gong, X.L.; Xuan, S.H.; Zhang, W.; Zheng, J.; Jiang, W.F. Interfacial friction damping properties in magnetorheological elastomers. Smart Mater. Struct. 2011, 20, 035007. [Google Scholar] [CrossRef]
- Chirila, P.E.; Chirica, I.; Beznea, E.F. Damping Properties of Magnetorheological Elastomers. Adv. Mater. Res. 2017, 1143, 247–252. [Google Scholar] [CrossRef]
- Shuib, R.K.; Pickering, K.L. Investigation and modelling of damping mechanisms of magnetorheological elastomers. J. Appl. Polym. Sci. 2016, 133, 43247. [Google Scholar] [CrossRef]
- Molchanov, V.S.; Stepanov, G.V.; Vasiliev, V.G.; Kramarenko, E.Y.; Khokhlov, A.R.; Xu, Z.D.; Guo, Y.Q. Viscoelastic Properties of Magnetorheological Elastomers for Damping Applications. Macromol. Mater. Eng. 2014, 299, 1116–1125. [Google Scholar] [CrossRef]
- Fan, Y.C.; Gong, X.L.; Xuan, S.H.; Qin, L.J.; Li, X. Effect of Cross-Link Density of the Matrix on the Damping Properties of Magnetorheological Elastomers. Ind. Eng. Chem. Res. 2013, 52, 771–778. [Google Scholar] [CrossRef]
- Gong, X.L.; Fan, Y.C.; Xuan, S.H.; Xu, Y.L.; Peng, C. Control of the Damping Properties of Magnetorheological Elastomers by Using Polycaprolactone as a Temperature-Controlling Component. Ind. Eng. Chem. Res. 2012, 51, 6395–6403. [Google Scholar] [CrossRef]
- Sun, T.L.; Gong, X.L.; Jiang, W.Q.; Li, J.F.; Xu, Z.B.; Li, W.H. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polym. Test. 2008, 27, 520–526. [Google Scholar] [CrossRef]
- Chen, L.; Gong, X.L. Damping of magnetorheological elastomers. J. Cent. South. Univ. Technol. 2008, 15, 271–274. [Google Scholar] [CrossRef]
- Demchuk, S.A.; Kuzmin, V.A. Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation. J. Eng. Phys. Thermophys. 2002, 75, 396–400. [Google Scholar] [CrossRef]
- Yang, J.; Gong, X.L.; Deng, H.X.; Qin, L.; Xuan, S.H. Investigation on the mechanism of damping behavior of magnetorheological elastomers. Smart Mater. Struct. 2012, 21, 125015. [Google Scholar] [CrossRef]
- Fan, Y.C.; Gong, X.L.; Jiang, W.Q.; Zhang, W.; Wei, B.; Li, W.H. Effect of maleic anhydride on the damping property of magnetorheological elastomers. Smart Mater. Struct. 2010, 19, 055015. [Google Scholar] [CrossRef]
- Deng, H.X.; Han, G.; Wang, Y.; Deng, J.; Zhang, J.; Ma, M.; Zhong, X. Interface modeling of magnetorheological elastomers subjected to variable working strain. Soft Matter 2019, 15, 5574–5584. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Shen, L.; Li, J.; Xuan, S.H.; Li, Z.; Fan, X.; Li, B.; Gong, X.L. Temperature dependent magneto-mechanical properties of magnetorheological elastomers. J. Magn. Magn. Mater. 2020, 497, 165998. [Google Scholar] [CrossRef]
- Liao, G.J.; Xu, Y.; Wang, F.; Wei, F.; Wan, Q. Influence of γ radiation on the shear modulus of magnetorheological elastomer. Mater. Lett. 2016, 174, 79–81. [Google Scholar] [CrossRef]
- Yu, M.; Fu, J.; Ju, B.X.; Zheng, X.; Choi, S.B. Influence of X-ray radiation on the properties of magnetorheological elastomers. Smart Mater. Struct. 2013, 22, 125010. [Google Scholar] [CrossRef]
- Maiti, A.; Weisgraber, T.H.; Gee, R.H.; Small, W.; Alviso, C.T.; Chinn, S.C.; Maxwell, R.S. Radiation-induced mechanical property changes in filled rubber. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 83, 062801. [Google Scholar] [CrossRef] [PubMed]
- Aida, S.Z.N.; Jalali-Arani, A. Study on the morphology, static and dynamic mechanical properties of (styrene butadiene rubber/ethylene propylene diene monomer/organoclay) nanocomposites vulcanized by the gamma radiation. J. Appl. Polym. Sci. 2011, 133, 43581. [Google Scholar]
- Liu, Y.; Zhou, C.; Feng, S. Effects of γ-ray radiation on the properties of fluorosilicone rubber. Mater. Lett. 2012, 78, 110–112. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, Y.; Cheng, A.; Lu, Y.; Liu, J.; Zeng, X.; Wang, L.; Zhang, Y.; Guo, Y. Enhanced thermal stability of gamma radiation vulcanized polybutadiene rubber (PBR)/nature rubber (NR) blends with sulfur added. Mater. Lett. 2017, 186, 186–188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, G.; Zhang, W.; Zeng, Q.; Peng, X.; Wu, W.; Liu, S.; Lan, B.; Zhang, Y. Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer. Polymers 2022, 14, 3708. https://doi.org/10.3390/polym14183708
Liao G, Zhang W, Zeng Q, Peng X, Wu W, Liu S, Lan B, Zhang Y. Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer. Polymers. 2022; 14(18):3708. https://doi.org/10.3390/polym14183708
Chicago/Turabian StyleLiao, Guojiang, Wenzheng Zhang, Qingna Zeng, Xiangfeng Peng, Wanjun Wu, Shuai Liu, Bin Lan, and Yixiong Zhang. 2022. "Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer" Polymers 14, no. 18: 3708. https://doi.org/10.3390/polym14183708
APA StyleLiao, G., Zhang, W., Zeng, Q., Peng, X., Wu, W., Liu, S., Lan, B., & Zhang, Y. (2022). Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer. Polymers, 14(18), 3708. https://doi.org/10.3390/polym14183708