Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Membrane Characterization
2.4. Gas Permeation Analysis
3. Results
3.1. PEI/IL Membranes
3.2. Polymer/ZIF-8 Membranes
3.3. PEI/IL/ZIF-8 Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tollefson, J.; Weiss, K.R. Nations approve historic global climate accord. Nat. News 2015, 528, 315. [Google Scholar] [CrossRef] [PubMed]
- Smithson, P.A. IPCC 2001: Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Jacobson, M.Z. Review of Solutions to Global Warming, Air Pollution, and Energy. Energy Environ. Sci. 2009, 28, 14. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2005. [Google Scholar]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Oyenekan, B.A.; Rochelle, G.T. Energy Performance of Stripper Configurations for CO2 Capture by Aqueous Amines. Ind. Eng. Chem. Res. 2006, 45, 2457–2464. [Google Scholar] [CrossRef]
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Favre, E. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chem. Eng. J. 2011, 171, 782–793. [Google Scholar] [CrossRef]
- Ho, M.T.; Allinson, G.W.; Wiley, D.E. Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption. Ind. Eng. Chem. Res. 2008, 47, 4883–4890. [Google Scholar] [CrossRef]
- Hägg, M.-B.; Lindbråthen, A. CO2 Capture from Natural Gas Fired Power Plants by Using Membrane Technology. Ind. Eng. Chem. Res. 2005, 44, 7668–7675. [Google Scholar] [CrossRef]
- Bredesen, R.; Jordal, K.; Bolland, O. High-temperature membranes in power generation with CO2 capture. Chem. Eng. Process. Process Intensif. 2004, 43, 1129–1158. [Google Scholar] [CrossRef]
- Tuinier, M.; Annaland, M.V.S.; Kramer, G.; Kuipers, J. Cryogenic CO2 capture using dynamically operated packed beds. Chem. Eng. Sci. 2010, 65, 114–119. [Google Scholar] [CrossRef]
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Koros, W.J. Gas separation membranes: Needs for combined materials science and processing approaches. Macromol. Symp. 2002, 188, 13–22. [Google Scholar] [CrossRef]
- Maier, G. Gas Separation with Polymer Membranes. Angew. Chem. Int. Ed. 1998, 37, 2960–2974. [Google Scholar] [CrossRef]
- Stern, S.A. Polymers for gas separations: The next decade. J. Membr. Sci. 1994, 94, 1–65. [Google Scholar] [CrossRef]
- Freeman, B.D.; Pinnau, I. Polymeric Materials for Gas Separations, in: Polymer Membranes for Gas and Vapor Separation. Am. Chem. Soc. 1999, 1–27. [Google Scholar] [CrossRef]
- Merkel, T.C.; Freeman, B.D.; Spontak, R.J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A.J. Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science 2002, 296, 519–522. [Google Scholar] [CrossRef]
- Moaddeb, M.; Koros, W.J. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J. Membr. Sci. 1997, 125, 143–163. [Google Scholar] [CrossRef]
- Hibshman, C.; Cornelius, C.; Marand, E. The gas separation effects of annealing polyimide–organosilicate hybrid membranes. J. Membr. Sci. 2003, 211, 25–40. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamada, Y. Physical and Gas Transport Properties of Novel Hyperbranched Polyimide? Silica Hybrid Membranes. Polym. Bull. 2005, 53, 139–146. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.M. Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J. Membr. Sci. 2001, 193, 209–225. [Google Scholar] [CrossRef]
- Joly, C.; Smaihi, M.; Porcar, L.; Noble, R.D. Polyimide−Silica Composite Materials: How Does Silica Influence Their Microstructure and Gas Permeation Properties? Chem. Mater. 1999, 11, 2331–2338. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O′Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef]
- Dai, Y.; Johnson, J.; Karvan, O.; Sholl, D.S.; Koros, W. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J. Membr. Sci. 2012, 401–402, 76–82. [Google Scholar] [CrossRef]
- Winarta, J.; Meshram, A.; Zhu, F.; Li, R.; Jafar, H.; Parmar, K.; Liu, J.; Mu, B. Metal–organic framework-based mixed-matrix membranes for gas separation: An overview. J. Appl. Polym. Sci. 2020, 58, 2518–2546. [Google Scholar] [CrossRef]
- Guan, W.; Dai, Y.; Dong, C.; Yang, X.; Xi, Y. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review. J. Appl. Polym. Sci. 2020, 137, 48968. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed. 2006, 45, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, M.J.C.; Balkus, K.J., Jr.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Haldoupis, E.; Watanabe, T.; Nair, S.; Sholl, D.S. Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem 2012, 13, 3449–3452. [Google Scholar] [CrossRef]
- Nafisi, V.; Hägg, M.-B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci. 2014, 459, 244–255. [Google Scholar] [CrossRef]
- Xu, L.; Xiang, L.; Wang, C.; Yu, J.; Zhang, L.; Pan, Y. Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chin. J. Chem. Eng. 2017, 25, 882–891. [Google Scholar] [CrossRef]
- Chen, F.; Dong, S.; Wang, Z.; Xu, J.; Xu, R.; Wang, J. Preparation of mixed matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid. Int. J. Hydrogen Energy 2020, 45, 7444–7454. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Savitri, E. High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification. J. Polym. Eng. 2020, 40, 459–467. [Google Scholar] [CrossRef]
- Jiao, C.; Li, Z.; Li, X.; Wu, M.; Jiang, H. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Sep. Purif. Technol. 2021, 259, 118190. [Google Scholar] [CrossRef]
- Balçık, M.; Tantekin-Ersolmaz, S.B.; Ahunbay, M.G. Interfacial analysis of mixed-matrix membranes under exposure to high-pressure CO2. J. Membr. Sci. 2020, 607, 118147. [Google Scholar] [CrossRef]
- Van Essen, M.; Montrée, E.; Houben, M.; Borneman, Z.; Nijmeijer, K. Magnetically Aligned and Enriched Pathways of Zeolitic Imidazolate Framework 8 in Matrimid Mixed Matrix Membranes for Enhanced CO2 Permeability. Membranes 2020, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Díaz, K.; Garrido, L.; López-González, M.; del Castillo, L.F.; Riande, E. CO2 Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks as Determined by Permeation and PFG NMR Techniques. Macromolecules 2009, 43, 316–325. [Google Scholar] [CrossRef]
- Benedetti, F.M.; De Angelis, M.G.; Degli Esposti, M.; Fabbri, P.; Masili, A.; Orsini, A.; Pettinau, A. Enhancing the Separation Performance of Glassy PPO with the Addition of a Molecular Sieve (ZIF-8): Gas Transport at Various Temperatures. Membranes 2020, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Clémenson, S.; Espuche, E.; David, L.; Léonard, D. Nanocomposite membranes of polyetherimide nanostructured with palladium particles: Processing route, morphology and functional properties. J. Membr. Sci. 2010, 361, 167–175. [Google Scholar] [CrossRef]
- Kurdi, J.; Tremblay, A.Y. Preparation of defect-free asymmetric membranes for gas separations. J. Appl. Polym. Sci. 1999, 73, 1471–1482. [Google Scholar] [CrossRef]
- López-González, M.M.; Compañ, V.; Saiz, E.; Riande, E.; Guzmán, J. Effect of the upstream pressure on gas transport in poly(ether-imide) films. J. Membr. Sci. 2005, 253, 175–181. [Google Scholar] [CrossRef]
- Qariouh, R.H.; Schué, F.; Schué, C. Bailly, Sorption, diffusion and pervaporation of water/ethanol mixtures in polyetherimide membranes. Polym. Int. 1999, 48, 171–180. [Google Scholar] [CrossRef]
- Ripoche, A.; Menut, P.; Dupuy, C.; Caquineau, H.; Deratani, A. Poly (ether imide) membrane formation by water vapour induced phase inversion. Macromol. Symp. 2002, 188, 37–48. [Google Scholar] [CrossRef]
- Uriarte, C.; Alfageme, J.; Iruin, J.J. Carbon dioxide transport properties of composite membranes of a polyetherimide and a liquid crystal polymer. Eur. Polym. J. 1998, 34, 1405–1413. [Google Scholar] [CrossRef]
- Eiras, Y.D.; Labreche, L.A. Pessan, Ultem®/ZIF-8 mixed matrix membranes for gas separation: Transport and physical prop-erties. Mater. Res. 2016, 19, 220–228. [Google Scholar] [CrossRef][Green Version]
- Vega, J.; Andrio, A.; Lemus, A.; Díaz, J.; del Castillo, L.; Gavara, R.; Compañ, V. Modification of polyetherimide membranes with ZIFs fillers for CO2 separation. Sep. Purif. Technol. 2019, 212, 474–482. [Google Scholar] [CrossRef]
- Zhu, H.; Jie, X.; Wang, L.; Kang, G.; Liu, D.; Cao, Y. Effect of MIL-53 on phase inversion and gas separation performance of mixed matrix hollow fiber membranes. RSC Adv. 2016, 6, 69124–69134. [Google Scholar] [CrossRef]
- Song, Q.; Nataraj, S.K.; Roussenova, M.V.; Tan, J.C.; Hughes, D.J.; Li, W.; Bourgoin, P.; Alam, M.A.; Cheetham, A.K.; Al-Muhtaseb, S.A.; et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359–8369. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Mukhtar, H.; Mohshim, D.F.; Nasir, R.; Man, Z. Surface modification in inorganic filler of mixed matrix mem-brane for enhancing the gas separation performance. Rev. Chem. Eng. 2016, 32, 181–200. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Zeng, S.; Gao, H.; Bai, L.; Deng, J.; Yang, Q.; Zhang, S. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv. 2017, 7, 6422–6431. [Google Scholar] [CrossRef]
- Gao, H.; Bai, L.; Han, J.; Yang, B.; Zhang, S.; Zhang, X. Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. 2018, 54, 12671–12685. [Google Scholar] [CrossRef]
- Hasib-Ur-Rahman, M.; Siaj, M.; Larachi, F. Ionic liquids for CO2 capture—Development and progress. Chem. Eng. Process. Process Intensif. 2010, 49, 313–322. [Google Scholar] [CrossRef]
- Tomé, L.C.; Patinha, D.J.S.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. CO2 separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv. 2013, 3, 12220–12229. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Gu, A.Z.; Brennecke, J.F. High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems. J. Phys. Chem. B 2001, 105, 2437–2444. [Google Scholar] [CrossRef]
- Magana, S.; Gain, O.; Gouanvé, F.; Espuche, E. Influence of different alkyl-methylimidazolium tetrafluoroborate ionic liquids on the structure of pebax® films. Consequences on thermal, mechanical, and water sorption and diffusion properties. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 811–824. [Google Scholar] [CrossRef]
- Hudiono, Y.C.; Carlisle, T.K.; LaFrate, A.L.; Gin, D.L.; Noble, R.D. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J. Membr. Sci. 2011, 370, 141–148. [Google Scholar] [CrossRef]
- Jomekian, B.A.; Bazooyar, R.M.; Behbahani, T.; Mohammadi, A. Kargari Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2. J. Membr. Sci. 2017, 524, 652–662. [Google Scholar] [CrossRef]
- Grigoryeva, O.; Fainleib, A.; Tolstov, A.; Pissis, P.; Spanoudaki, A.; Vatalis, A.; Delides, C. Thermal analysis of thermoplastic elastomers based on recycled polyethylenes and ground tyre rubber. J. Therm. Anal. 2006, 86, 229–233. [Google Scholar] [CrossRef]
- Farong, H.; Xueqiu, W.; Shijin, L. The Thermal Stability of Polyetherimide. Polym. Degrad. Stab. 1987, 18, 247–259. [Google Scholar] [CrossRef]
- Cho, C.; Nam, S.L.; de la Mata, A.P.; Harynuk, J.J.; Elias, A.L.; Chung, H.-J.; Dolez, P.I. Investigation of the accelerated thermal aging behaviorof polyetherimide and lifetime prediction at elevated temperature. J. Appl. Polym. Sci. 2022, 139, e51955. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Polyetherimide Foams Filled with Low Content of Graphene Nanoplatelets Prepared by scCO2 Dissolution. Polymers 2019, 11, 328. [Google Scholar] [CrossRef]
- Magana, S.; Festin, N.; Fumagalli, M.; Chikh, L.; Gouanvé, F.; Mareau, V.; Gonon, L.; Fichet, O.; Espuche, E. Hydrophobic networks for advanced proton conducting membrane: Synthesis, transport properties and chemical stability. J. Membr. Sci. 2015, 494, 161–173. [Google Scholar] [CrossRef]
- Sood, R.; Iojoiu, C.; Espuche, E.; Gouanvé, F.; Mendil-Jakani, H.; Lyonnard, S. Influence of different perfluorinated anion based Ionic liquids on the intrinsic properties of Nafion®. J. Membr. Sci. 2015, 495, 445–456. [Google Scholar] [CrossRef]
- Singh, H.; Zhuang, S.; Nunna, B.B.; Lee, E.S. Thermal Stability and Potential Cycling Durability of Nitrogen-Doped Graphene Modified by Metal-Organic Framework for Oxygen Reduction Reactions. Catalysts 2018, 8, 607. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.F.; Shen, Y. Polymer–inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Hao, L.; Li, P.; Yang, T.; Chung, T.S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J. Membr. Sci. 2013, 436, 221–231. [Google Scholar] [CrossRef]
- Deniz, S. Characterization and gas permeation properties of polyetherimide/zeolitic imidazolate framework 8 5 (PEI/ZIF-8) mixed matrix membranes. Int. J. Eng. Appl. Sci. 2012, 12, 1–11. [Google Scholar]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Mixed Matrix Membranes Comprising of ZIF-8 Nanofillers for Enhanced Gas Transport Properties. Procedia Eng. 2016, 148, 1259–1265. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, H.S.; Kim, D.; Kim, J.; Lee, P.S. Preparation of Mixed Matrix Membranes Containing ZIF-8 and UiO-66 for Multicomponent Light Gas Separation. Crystals 2019, 9, 15. [Google Scholar] [CrossRef]
Name | Abbreviation | Chemical Structure |
---|---|---|
Ultem 1000 | PEI | |
Basolite Z1200 | ZIF-8 | |
1-Ethyl-3-methyl imidazolium Tetrafluoroborate | [Emim][BF4] |
PHe (Barrer) | PCO2 (Barrer) | PH2 (Barrer) | |
---|---|---|---|
PEI | 9.2 | 1.8 | 7.9 |
PEI/2.5 IL | 8.6 | 1.2 | 7.4 |
PEI/7 IL | 9.1 | 1.5 | 8.1 |
PHe (Barrer) | PCO2 (Barrer) | PH2 (Barrer) | DCO2 ×10−9 (cm2/s) | SCO2 (ccSTP·cm/cmHg) | αH2/CO2 | |
---|---|---|---|---|---|---|
PEI | 9.2 | 1.8 | 7.9 | 1.6 | 0.11 | 4.4 |
PEI/10 ZIF-8 | 18.3 | 3.6 | 17.1 | 2.7 | 0.13 | 4.8 |
PEI/15 ZIF-8 | 19.7 | 3.7 | 18.3 | 2.9 | 0.12 | 5.0 |
PEI/20 ZIF-8 | 27.8 | 5.5 | 25.6 | 4.8 | 0.11 | 4.7 |
PEI/25 ZIF-8 | 36.2 | 6.8 | 30.0 | 6.7 | 0.10 | 4.4 |
PHe (Barrer) | PCO2 (Barrer) | PH2 (Barrer) | DCO2 ×10−9 (cm2/s) | SCO2 (ccSTP·cm/cmHg) | αH2/CO2 | |
---|---|---|---|---|---|---|
PEI/2.5 IL/10 ZIF-8 | 20 | 8.5 | 18 | 6.1 | 0.14 | 2.1 |
PEI/7 IL/10 ZIF-8 | 28.3 | 14 | 36.6 | 25 | 0.056 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zid, S.; Alcouffe, P.; Zinet, M.; Espuche, E. Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers 2022, 14, 3489. https://doi.org/10.3390/polym14173489
Zid S, Alcouffe P, Zinet M, Espuche E. Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers. 2022; 14(17):3489. https://doi.org/10.3390/polym14173489
Chicago/Turabian StyleZid, Sarra, Pierre Alcouffe, Matthieu Zinet, and Eliane Espuche. 2022. "Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties" Polymers 14, no. 17: 3489. https://doi.org/10.3390/polym14173489
APA StyleZid, S., Alcouffe, P., Zinet, M., & Espuche, E. (2022). Mixed-Matrix Membranes Based on Polyetherimide, Metal–Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers, 14(17), 3489. https://doi.org/10.3390/polym14173489