Reinforced Structure Effect on Thermo-Oxidative Stability of Polymer-Matrix Composites: 2-D Plain Woven Composites and 2.5-D Angle-Interlock Woven Composites
Abstract
:1. Introduction
2. Experimental
2.1. Material
2.2. Material Preparation
2.3. Accelerated Ageing and Characterization
2.3.1. Isothermal Ageing
2.3.2. Chemical Analysis
2.3.3. Dynamic Mechanical Analysis (DMA)
2.3.4. Thermogravimetric Analysis (TGA)
2.3.5. Mechanical Test
3. Numerical Analysis
3.1. Geometry Model
3.2. Constitutive Model
3.2.1. Epoxy Resin
3.2.2. Yarns
3.2.3. Interface
3.3. Modeling of Matrix Shrinkage
4. Results and Discussion
4.1. Thermal Oxidative Degradation Mechanisms of Epoxy Resin
4.1.1. ATR-FTIR Analyses
4.1.2. Dynamic Thermomechanical Behaviors
4.1.3. Thermogravimetric Analysis
4.2. Reinforced Structure Effect
4.2.1. Matrix Shrinkage
4.2.2. Interface Crack Evolution
4.3. Experimental Validates-Interlaminar Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, S.; Behera, B.K. Auxetic fibrous structures and their composites: A review. Compos. Struct. 2022, 290, 115530. [Google Scholar] [CrossRef]
- Lau, K.; Hung, P.; Zhu, M.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. Part B-Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Hiremath, N.; Young, S.; Ghossein, H.; Penumadu, D.; Vaidya, U.; Theodore, M. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications. Compos. Part B-Eng. 2020, 198, 108156. [Google Scholar] [CrossRef]
- Abdelrahman, M.S.; Nassar, S.H.; Mashaly, H.; Mahmoud, S.; Maamoun, D.; El-Sakhawy, M.; Khattab, T.A.; Kamel, S. Studies of Polylactic Acid and Metal Oxide Nanoparticles-Based Composites for Multifunctional Textile Prints. Coatings 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Khattab, T.A.; Haggag, K.M.; Elnagdi, M.H.; Abdelrahman, A.A.; Aly, S.A. Microwave-Assisted Synthesis of Arylazoaminopyrazoles as Disperse Dyes for Textile Printing. Z. Anorg. Allg. Chem. 2016, 642, 766–772. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Nurazzi, N.; Khalina, K.; Sapuan, S. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment. Polimery 2019, 64, 665–675. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. Mechanical Properties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers 2020, 12, 2211. [Google Scholar] [CrossRef]
- Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Khalina, A.; Nurazzi, N.M.; Lee, S.H.; Lee, C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers 2021, 13, 471. [Google Scholar] [CrossRef]
- Yildirim, F.; Kabakci, E.; Sas, H.S.; Eskizeybek, V. Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding. Polym. Compos. 2022, 43, 5690–5703. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, L.; Pei, R.; Chen, L.; Xu, F. Light-weight, high-gain antenna with broad temperature adaptability based on multifunctional 3D woven spacer Kevlar/polyimide composites. Compos. Commun. 2022, 30, 101061. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, P. Comparative Study on the Tribological Properties of PTFE Coated Kevlar Fabric and Hybrid PTFE/Kevlar Fabric. Fibers Polym. 2022, 23, 1111–1118. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, L.; Pei, R.; Chen, L.; Xu, F. High Temperature Aerospace Applications Epoxy Resin Transfer Molding Resins for High Temperature Aerospace Applications. Sampe J. 2020, 56, 38–43. [Google Scholar]
- Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Khalina, A.; Berkalp, O.B.; Lee, S.H.; Lee, C.H.; Nurazzi, N.M.; Ramli, N.; Wahab, M.S.; et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019, 2019, 5258621. [Google Scholar] [CrossRef] [Green Version]
- Haris, N.I.N.; Ilyas, R.A.; Hassan, M.Z.; Sapuan, S.M.; Afdzaluddin, A.; Jamaludin, K.R.; Zaki, S.A.; Ramlie, F. Dynamic Mechanical Properties and Thermal Properties of Longitudinal Basalt/Woven Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites. Polymers 2021, 13, 3343. [Google Scholar] [CrossRef]
- Buch, X.; Shanahan, M.E.R. Thermal and thermo-oxidative ageing of an epoxy adhesive. Polym. Degrad. Stab. 2000, 68, 403–411. [Google Scholar] [CrossRef]
- Buch, X.; Shanahan, M.E.R. Migration of cross-linking agents to the surface during ageing of a structural epoxy adhesive. Int. J. Adhes. Adhes. 2003, 23, 261–267. [Google Scholar] [CrossRef]
- Deng, J.; Song, Y.; Xu, Z.; Nie, Y.; Lan, Z. Thermal Aging Effects on the Mechanical Behavior of Glass-Fiber-Reinforced Polyphenylene Sulfide Composites. Polymers 2022, 14, 1275. [Google Scholar] [CrossRef]
- Gigliotti, M.; Minervino, M.; Lafarie-Frenot, M.C. Assessment of thermo-oxidative induced chemical strain by inverse analysis of shrinkage profiles in unidirectional composites. Compos. Struct. 2016, 157, 320–336. [Google Scholar] [CrossRef]
- Gigliotti, M.; Minervino, M.; Lafarie-Frenot, M.C. Thermo-oxidative induced shrinkage in Organic Matrix Composites for High Temperature Applications: Effect of fibre arrangement and oxygen pressure. Compos. Struct. 2016, 146, 176–186. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, B.; Gu, B. Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions. Compos. Struct. 2018, 204, 320–332. [Google Scholar] [CrossRef]
- Kucher, M.K.; Yakovleva, O.S.; Chyzhyk, O.O. Thermal Expansion and Shrinkage of Unidirectional Composites at Elevated Temperatures. Strength Mater. 2020, 52, 790–797. [Google Scholar] [CrossRef]
- Lévêque, D.; Schieffer, A.; Mavel, A.; Maire, J. Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer-matrix composites. Compos. Sci. Technol. 2005, 65, 395–401. [Google Scholar] [CrossRef]
- Pochiraju, K.; Tandon, G.P. Interaction between cracking and oxidation in organic matrix composites. J. Compos. Mater. 2005, 39, 1371–1389. [Google Scholar] [CrossRef]
- Liang, J.; Pochiraju, K.V. Oxidation-induced damage evolution in a unidirectional polymer matrix composite. J. Compos. Mater. 2015, 49, 1393–1406. [Google Scholar] [CrossRef]
- Sebaey, T.A. Effect of Exposure Temperature on the Crashworthiness of Carbon/Epoxy Composite Rectangular Tubes Under Quasi-Static Compression. Polymers 2020, 12, 2028. [Google Scholar] [CrossRef]
- Schoeppner, G.A.; Tandon, G.P.; Ripberger, E.R. Anisotropic oxidation and weight loss in PMR-15 composites. Compos. Part A-Appl. Sci. Manuf. 2007, 38, 890–904. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Ma, J.; Liu, B. Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites. Comput. Mater. Sci. 2013, 68, 255–262. [Google Scholar] [CrossRef]
- Gigliotti, M.; Olivier, L.; Vu, D.Q.; Grandidier, J.; Lafarie-Frenot, M.C. Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures. J. Mech. Phys. Solids 2011, 59, 696–712. [Google Scholar] [CrossRef]
- Tandon, G.P.; Ragland, W.R. Influence of laminate lay-up on oxidation and damage growth: Isothermal aging. Compos. Part A-Appl. Sci. Manuf. 2011, 42, 1127–1137. [Google Scholar] [CrossRef]
- el Mourid, A.; Ganesan, R.; Brochu, M.; Crochon, T.; Léévesque, M. Anisotropic oxidation due to aging in a triaxially braided composite and its influence on tensile failure. Compos. Part B-Eng. 2015, 76, 1–12. [Google Scholar] [CrossRef]
- Ke, Y.; Sun, B.; Gu, B.; Zhang, W. Damage initiation and propagation mechanisms of 3-D angle-interlock woven composites under thermo-oxidative aging. Compos. Struct. 2021, 259, 113462. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, W.; Guo, J.; Xun, L.; Sun, B.; Gu, B. Near-fiber nanomechanical mapping and impact failure mechanism of 3D braided composites subjected to thermo-oxidative environment. Compos. Sci. Technol. 2021, 216, 109052. [Google Scholar] [CrossRef]
- Xun, L.; Wu, Y.; Huang, S.; Sun, B.; Gu, B.; Hu, M. Degradation of torsional behaviors of 3-D braided thin-walled tubes after atmospheric thermal ageing. Thin-Walled Struct. 2022, 170, 108555. [Google Scholar] [CrossRef]
- Wu, Y.; Xun, L.; Huang, S.; Ren, C.; Sun, B.; Gu, B. Crack spatial distributions and dynamic thermomechanical properties of 3D braided composites during thermal oxygen ageing. Compos. Part A-Appl. Sci. Manuf. 2021, 144, 106355. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Zheng, Y.; Guo, D. The effect of reinforced structure on thermo-oxidative stability of polymer-matrix composites. J. Ind. Text. 2016, 46, 237–255. [Google Scholar] [CrossRef]
- Cao, M.; Wang, H.; Gu, B.; Sun, B. Impact damage and compression behaviours of three-dimensional angle-interlock woven composites after thermo-oxidation degradation. J. Compos. Mater. 2018, 52, 2085–2101. [Google Scholar] [CrossRef]
- Huang, Z.M. A unified micromechanical model for the mechanical properties of two constituent composite materials. Part I: Elastic behavior. J. Thermoplast. Compos. Mater. 2000, 13, 252–271. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Delamar, M.; Shanahan, M.E.R. Irreversible interactions between water and DGEBA/DDA epoxy resin during hydrothermal aging. J. Appl. Polym. Sci. 1997, 65, 449–458. [Google Scholar] [CrossRef]
- Ohno, S.; Lee, M.; Lin, K.Y.; Ohuchi, F.S. Thermal degradation of IM7/BMI5260 composite materials: Characterization by X-ray photoelectron spectroscopy. Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process. 2000, 293, 88–94. [Google Scholar] [CrossRef]
- Ma, S.; He, Y.; Hui, L.; Xu, L. Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites. Adv. Compos. Mater. 2020, 29, 55–72. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Zheng, Y.; Liu, T.; Tian, X.; Sun, R. Influence of Thermo-Oxidative Aging on Vibration Damping Characteristics of Conventional and Graphene-Based Carbon Fiber Fabric Composites. Polym. Compos. 2016, 37, 2871–2883. [Google Scholar] [CrossRef]
- Audouin, L.; Langlois, V.; Verdu, J.; de Bruijn, J.C.M. Role of oxygen diffusion in polymer aging—Kinetic and mechanical aspects. J. Mater. Sci. 1994, 29, 569–583. [Google Scholar] [CrossRef]
- Rivers, G.; Cronin, D. Influence of moisture and thermal cycling on delamination flaws in transparent armor materials: Thermoplastic polyurethane bonded glass-polycarbonate laminates. Mater. Des. 2019, 182, 108026. [Google Scholar] [CrossRef]
- Fan, W.; Guo, D.; Li, J.; Zhou, Y.; Gong, L.; Xue, L.; Li, J.; Yuan, L.; Sun, R.; Meng, J. Effect of thermo-oxidative aging on compressive behavior of carbon fiber polymer matrix composites. Text. Res. J. 2018, 88, 510–519. [Google Scholar] [CrossRef]
- Petkov, V.I.; Joffe, R.; Fernberg, P. Thermal oxidative aging of satin weave and thin-ply polyimide composites. Polym. Compos. 2022, 43, 2615–2627. [Google Scholar] [CrossRef]
Name | Chemical Component | Viscosity at Room Temperature (MPa·s) | Epoxide Number (eq/100 g) | Blending Ratio |
---|---|---|---|---|
JC-02A | Bisphenol A epoxy resin | 1000–3000 | 0.5–0.53 | 100:80 |
JC-02B | Modified anhydride | 30–50 | - |
Name | Density (g/cm3) | Diameter (um) | Carbon Content |
---|---|---|---|
Carbon fiber | 1.8 ± 0.02 | 7 | ≥95% |
Preform | Parameter | Warp | Weft |
---|---|---|---|
2-D Plain woven | fiber type | T300-3K | T300-3K |
density/(ends·cm−1) | 5.0 | 5.0 | |
layers | 20 (in 0° direction) | ||
thickness/mm | 0.35 (single layer) | ||
2.5-D Angle-interlock woven | fiber type | T300-6K | T700-12K |
density/(ends·cm−1) * | 8.0 | 3.8 | |
layers | 7 | 6/8 | |
thickness/mm | 6.20 |
Carbon Fiber | Epoxy Resin | Fiber Tows | |
---|---|---|---|
E11 (GPa) | 230 | 2.4 | 142.8 |
E22 = E33 (GPa) | 14 | 6.4 | |
G12 = G13 (GPa) | 9 | 0.89 | 3.0 |
G23 (GPa) | 5 | 2.3 | |
ν12 = ν13 | 0.25 | 0.35 | 0.11 |
ν23 | 0.3 | 0.35 |
β | ||||||
4 × 106 | 1 × 106 | 120 | 150 | 0.25 | 1.0 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Han, T.; Tang, B.; Yi, J.; Cao, M. Reinforced Structure Effect on Thermo-Oxidative Stability of Polymer-Matrix Composites: 2-D Plain Woven Composites and 2.5-D Angle-Interlock Woven Composites. Polymers 2022, 14, 3454. https://doi.org/10.3390/polym14173454
Gao X, Han T, Tang B, Yi J, Cao M. Reinforced Structure Effect on Thermo-Oxidative Stability of Polymer-Matrix Composites: 2-D Plain Woven Composites and 2.5-D Angle-Interlock Woven Composites. Polymers. 2022; 14(17):3454. https://doi.org/10.3390/polym14173454
Chicago/Turabian StyleGao, Xingzhong, Tiancong Han, Bolin Tang, Jie Yi, and Miao Cao. 2022. "Reinforced Structure Effect on Thermo-Oxidative Stability of Polymer-Matrix Composites: 2-D Plain Woven Composites and 2.5-D Angle-Interlock Woven Composites" Polymers 14, no. 17: 3454. https://doi.org/10.3390/polym14173454
APA StyleGao, X., Han, T., Tang, B., Yi, J., & Cao, M. (2022). Reinforced Structure Effect on Thermo-Oxidative Stability of Polymer-Matrix Composites: 2-D Plain Woven Composites and 2.5-D Angle-Interlock Woven Composites. Polymers, 14(17), 3454. https://doi.org/10.3390/polym14173454