The Use of Recycled PET for the Synthesis of New Mechanically Improved PVP Composite Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nanofibers
2.3. Characterization
3. Results and Discussion
3.1. Rheology of the Solution
3.2. SEM
3.3. FTIR
3.4. TGA/DSC
3.5. Nanoindentation
3.6. Reaction Mechanism of RPET/PVP/ST
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soong, Y.H.V.; Sobkowicz, M.J.; Xie, D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering 2022, 9, 98. [Google Scholar] [CrossRef]
- Benavides, P.T.; Dunn, J.B.; Han, J.; Biddy, M.; Markham, J. Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustain. Chem. Eng. 2018, 6, 9725–9733. [Google Scholar] [CrossRef]
- Jambeck, J.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. Available online: https://science.sciencemag.org/CONTENT/347/6223/768.abstract (accessed on 1 January 2020). [CrossRef] [PubMed]
- Pinter, E.; Welle, F.; Mayrhofer, E.; Pechhacker, A.; Motloch, L.; Lahme, V.; Grant, A.; Tacker, M. Circularity study on pet bottle-to-bottle recycling. Sustainability 2021, 13, 7370. [Google Scholar] [CrossRef]
- Soto, F.R.C.; Bueno, J.d.J.P.; López, M.L.M.; Ramos, M.E.P.; Araiza, J.L.R.; Jiménez, R.R.; Manzano-Ramírez, A. Sustainability metrics for housing and the thermal performance evaluation of a low-cost prototype made with Poly (Ethylene Terephthalate) bottles. Recycling 2019, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Brouwer, M.T.; van Velzen, E.U.T.; Augustinus, A.; Soethoudt, H.; De Meester, S.; Ragaert, K. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy. Waste Manag. 2018, 71, 62–85. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.N.; Redhwi, H.H.; Al-Arfaj, A.A.; Achilias, D.S. Chemical recycling of pet in the presence of the bio-based polymers, pla, phb and pef: A review. Sustainability 2021, 13, 10528. [Google Scholar] [CrossRef]
- Myren, T.H.T.; Stinson, T.A.; Mast, Z.J.; Huntzinger, C.G.; Luca, O.R. Chemical and Electrochemical Recycling of End-Use Poly(Ethylene Terephthalate) (PET) Plastics in Batch, Microwave and Electrochemical Reactors. Molecules 2020, 25, 2742. [Google Scholar] [CrossRef]
- Duque-Ingunza, I.; López-Fonseca, R.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Process optimization for catalytic glycolysis of post-consumer PET wastes. J. Chem. Technol. Biotechnol. 2014, 89, 97–103. [Google Scholar] [CrossRef]
- Karayannidis, G.P.; Nikolaidis, A.K.; Sideridou, I.D.; Bikiaris, D.N.; Achilias, D.S. Chemical recycling of PET by glycolysis: Polymerization and characterization of the dimethacrylated glycolysate. Macromol. Mater. Eng. 2006, 291, 1338–1347. [Google Scholar] [CrossRef]
- Duque-Ingunza, I.; López-Fonseca, R.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Synthesis of unsaturated polyester resin from glycolysed postconsumer PET wastes. J. Mater. Cycles Waste Manag. 2013, 15, 256–263. [Google Scholar] [CrossRef]
- Mendivil Escalante, J.M.; Gómez Soberón, J.M.; Almaral Sánchez, J.L.; Corral Higuera, R.; Arredondo Rea, S.P.; Castro Beltrán, A.; Cabrera Covarrubias, F.G. Synthesis and characterization of PET polymer resin for your application in concrete. Int. J. Struct. Anal. Des. 2015, 2, 105–109. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Zhang, X.; Weng, L. Hyperbranched unsaturated polyester resin for application in impregnation coatings. Iran. Polym. J. 2017, 26, 81–89. [Google Scholar] [CrossRef]
- Gonçalves, F.A.M.M.; Fonseca, A.C.; Domingos, M.; Gloria, A.; Serra, A.C.; Coelho, J.F.J. The potential of unsaturated polyesters in biomedicine and tissue engineering: Synthesis, structure-properties relationships and additive manufacturing. Prog. Polym. Sci. 2017, 68, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Fonseca, A.; Moniz, J.; Godinho, M.; Coelho, J.; Serra, A.C. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties. Express Polym. Lett. 2017, 11, 885–898. [Google Scholar] [CrossRef]
- Wu, Y.; Li, K. Replacement of styrene with acrylated epoxidized soybean oil in an unsaturated polyester resin from propylene glycol, isophthalic acid, and maleic anhydride. J. Appl. Polym. Sci. 2016, 133, 43052. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Soroory, H.; Mashak, A.; Rahimi, A. Application of PDMS-based coating in drug delivery systems using PVP as channeling agent. Iran. Polym. J. 2013, 22, 791–797. [Google Scholar] [CrossRef]
- Bonan, R.F.; Bonan, P.R.F.; Batista, A.U.D.; Sampaio, F.C.; Albuquerque, A.J.R.; Moraes, M.C.B.; Mattoso, L.H.C.; Glenn, G.M.; Medeiros, E.S.; Oliveira, J.E. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater. Sci. Eng. C 2015, 48, 372–377. [Google Scholar] [CrossRef]
- Yang, C.X.; Lei, L.; Zhou, P.X.; Zhang, Z.; Lei, Z.Q. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption. J. Colloid Interface Sci. 2015, 443, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Zander, N.E.; Gillan, M.; Sweetser, D. Recycled PET nanofibers for water filtration applications. Materials 2016, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadehmoghadam, S.; Dong, Y.; Jeffery Davies, I. Recent progress in electrospun nanofibers: Reinforcement effect and mechanical performance. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1171–1212. [Google Scholar] [CrossRef]
- Gdoutos, E.E.; Konsta-Gdoutos, M.S.; Danoglidis, P.A. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study. Cem. Concr. Compos. 2016, 70, 110–118. [Google Scholar] [CrossRef]
- Hemamalini, T.; Dev, V.R.G. Comprehensive review on electrospinning of starch polymer for biomedical applications. Int. J. Biol. Macromol. 2018, 106, 712–718. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Gavali, D.S.; Venkataprasanna, K.S.; Thapa, R.; Sarkar, D. Low-Basis Weight Polyacrylonitrile/Polyvinylpyrrolidone Blend Nanofiber Membranes for Efficient Particulate Matter Capture. ACS Appl. Polym. Mater. 2022, 4, 3971–3981. [Google Scholar] [CrossRef]
- Tao, Y.; Yan, P.; Wang, C.; Li, G. Luminescent electrospun composite nanofibers of [Eu(TFI) 3(Phen)]??CHCl3/polyvinylpyrrolidone. J. Mater. Sci. 2013, 48, 6682–6688. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Z.; Liu, M.; Zhang, M.; Hu, M.; Zhang, L.; Jiang, H.; Li, J. Electrospun dendritic ZnO nanofibers and its photocatalysis application. J. Appl. Polym. Sci. 2015, 132, 2–9. [Google Scholar] [CrossRef]
- Liu, S.; Zhai, J. Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J. Mater. Chem. A 2015, 3, 1511–1517. [Google Scholar] [CrossRef]
- Newsome, T.E.; Olesik, S.V. Electrospinning silica/polyvinylpyrrolidone composite nanofibers. J. Appl. Polym. Sci. 2014, 131, 40966. [Google Scholar] [CrossRef]
- Dong, G.; Xiao, X.; Liu, X.; Qian, B.; Ma, Z.; Ye, S.; Chen, D.; Qiu, J. Preparation and characterization of Ag nanoparticleembedded polymer electrospun nanofibers. J. Nanoparticle Res. 2010, 12, 1319–1329. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, X.; Yu, D.G.; Ye, S.; Kuang, Q.K.; Yi, Q.W.; Yao, X.Z. Electrospun borneol-PVP nanocomposites. J. Nanomater. 2012, 2012, 731382. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Vaezi, M.; Kazemzadeh, A.; Jamjah, R. Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. J. Appl. Polym. Sci. 2018, 135, 46337. [Google Scholar] [CrossRef]
- Chinchillas-Chinchillas, M.; Orozco-Carmona, V.M.; Alvarado, C.; Almaral-Sánchez, J.L.; Sepulveda-Guzman, S.; Jasso-Ramos, L.E.; Castro-Beltrán, A. Synthesis of Recycled Poly(ethylene terephthalate)/Polyacrylonitrile/Styrene Composite Nanofibers by Electrospinning and Their Mechanical Properties Evaluation. J. Polym. Environ. 2019, 27, 659–669. [Google Scholar] [CrossRef]
- Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymers 2014, 55, 4728–4737. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Han, G.; Zhang, L.; Chen, S.B.; Chung, T.S.; Weber, M.; Staudt, C.; Maletzko, C. Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. Polymers 2016, 99, 72–82. [Google Scholar] [CrossRef]
- Nadgorny, M.; Gentekos, D.T.; Xiao, Z.; Singleton, S.P.; Fors, B.P.; Connal, L.A. Manipulation of Molecular Weight Distribution Shape as a New Strategy to Control Processing Parameters. Macromol. Rapid Commun. 2017, 38, 1700352. [Google Scholar] [CrossRef]
- Yesilyurt, V.; Webber, M.J.; Appel, E.A.; Godwin, C.; Langer, R.; Anderson, D.G. Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties. Adv. Mater. 2016, 28, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G.W.M.; Lemstra, P.J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780–2788. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Rheological Method for Determining Molecular Weight and Molecular Weight Distribution. Mater. Sci. Technol. 2012, 6, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Perez, P.M.; Da Silva, R.M.P.; Strehin, I.; Kouwer, P.H.J.; Leeuwenburgh, S.C.G.; Messersmith, P.B. Self-Healing Hydrogels Formed by Complexation between Calcium Ions and Bisphosphonate-Functionalized Star-Shaped Polymers. Macromolecules 2017, 50, 8698–8706. [Google Scholar] [CrossRef] [PubMed]
- Appel, E.A.; Biedermann, F.; Rauwald, U.; Jones, S.T.; Zayed, J.M.; Scherman, O.A. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 2010, 132, 14251–14260. [Google Scholar] [CrossRef]
- Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Eng. 2006, 12, 1197–1211. [Google Scholar] [CrossRef] [Green Version]
- Aruna, S.T.; Balaji, L.S.; Kumar, S.S.; Prakash, B.S. Electrospinning in solid oxide fuel cells—A review. Renew. Sustain. Energy Rev. 2017, 67, 673–682. [Google Scholar] [CrossRef]
- Issam, A.M.; Hena, S.; Nurul Khizrien, A.K. A New Unsaturated Poly(ester-urethane) Based on Terephthalic Acid Derived from Polyethylene Terephthalate (PET) of Waste Bottles. J. Polym. Environ. 2012, 20, 469–476. [Google Scholar] [CrossRef]
- Peña, J.A.; Gutiérrez, S.J.; Villamil, J.C.; Agudelo, N.A.; Pérez, L.D. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts. Mater. Sci. Eng. C 2016, 58, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Bai, X.; Cui, H.; Zhu, J.; Liu, W.; Zhang, T.; Dong, B.; Pan, G.; Xu, L.; Zhang, S.; et al. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique. Nanotechnology 2017, 29, 25706. [Google Scholar] [CrossRef]
- Chiu, H.T.; Chiu, S.H.; Jeng, R.E.; Chung, J.S. Study of the combustion and fire-retardance behaviour of unsaturated polyester/phenolic resin blends. Polym. Degrad. Stab. 2000, 70, 505–514. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Elumalai, G.; Rajiv, S. Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J. Chem. 2016, 40, 3268–3276. [Google Scholar] [CrossRef]
- Cho, D.; Choi, D.; Pawar, R.C.; Lee, S.; Yoon, E.H.; Lee, T.Y.; Lee, C.S. Simple coating method of carbonaceous film onto copper nanopowder using PVP as solid carbon source. Mater. Chem. Phys. 2014, 148, 859–867. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, M.; Li, X.; Liu, Y.; Pan, H. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium-sulfur batteries. J. Alloys Compd. 2014, 608, 220–228. [Google Scholar] [CrossRef]
- Yousif, S.M.; Al-Marzouqi, A.H. Microencapsulation of Ibuprofen into Polyvinylpyrrolidone Using Supercritical Fluid Technology. J. Chem. Eng. Process Technol. 2016, 7, 1000306. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Clark, D.M.; Yu, X.; Zhong, Z.; Liu, K.; Reneker, D.H. Mechanical properties of polymer nanofibers revealed by interaction with streams of air. Polymer 2012, 53, 782–790. [Google Scholar] [CrossRef]
- Park, S.J.; Chase, G.G.; Jeong, K.U.; Kim, H.Y. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor. J. Sol-Gel Sci. Technol. 2010, 54, 188–194. [Google Scholar] [CrossRef]
- Jones, D.S.; Djokic, J.; McCoy, C.P.; Gorman, S.P. Poly(ε-caprolactone) and poly(ε-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: Characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro. Biomaterials 2002, 23, 4449–4458. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Zeng, G.-M.; Peng, Y.-R.; Zeng, Z. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. Chem. Eng. J. 2012, 200–202, 25–31. [Google Scholar] [CrossRef]
- Acar, H.; Karakışla, M.; Saçak, M. Potassium persulfate-mediated preparation of conducting polypyrrole/polyacrylonitrile composite fibers: Humidity and temperature-sensing properties. J. Appl. Polym. Sci. 2012, 125, 3977–3985. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Yang, Q.; Deng, T.; Wang, Y.; Yang, Y.; Jia, S.; Qin, Z.; Hou, X. Chemical recycling of unsaturated polyester resin and its composites via selective cleavage of the ester bond. Green Chem. 2015, 17, 4527–4532. [Google Scholar] [CrossRef]
PVP | RPET/PVP | RPET/PVP/ST | |
---|---|---|---|
Reduced Elastic Modulus (GPa) | 0.60 | 5.80 | 17.73 |
Standard Deviation | 0.05 | 1.02 | 2.13 |
Hardness (GPa) | 0.030 | 0.290 | 0.620 |
Standard Deviation | 0.005 | 0.05 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Sánchez, M.A.; Chinchillas-Chinchillas, M.J.; Gaxiola, A.; Alvarado-Beltrán, C.G.; Hurtado-Macías, A.; Orozco-Carmona, V.M.; Almaral-Sánchez, J.L.; Sepúlveda-Guzmán, S.; Castro-Beltrán, A. The Use of Recycled PET for the Synthesis of New Mechanically Improved PVP Composite Nanofibers. Polymers 2022, 14, 2882. https://doi.org/10.3390/polym14142882
Gallardo-Sánchez MA, Chinchillas-Chinchillas MJ, Gaxiola A, Alvarado-Beltrán CG, Hurtado-Macías A, Orozco-Carmona VM, Almaral-Sánchez JL, Sepúlveda-Guzmán S, Castro-Beltrán A. The Use of Recycled PET for the Synthesis of New Mechanically Improved PVP Composite Nanofibers. Polymers. 2022; 14(14):2882. https://doi.org/10.3390/polym14142882
Chicago/Turabian StyleGallardo-Sánchez, Manuel A., Manuel J. Chinchillas-Chinchillas, Alberto Gaxiola, Clemente G. Alvarado-Beltrán, Abel Hurtado-Macías, Víctor M. Orozco-Carmona, Jorge L. Almaral-Sánchez, Selene Sepúlveda-Guzmán, and Andrés Castro-Beltrán. 2022. "The Use of Recycled PET for the Synthesis of New Mechanically Improved PVP Composite Nanofibers" Polymers 14, no. 14: 2882. https://doi.org/10.3390/polym14142882
APA StyleGallardo-Sánchez, M. A., Chinchillas-Chinchillas, M. J., Gaxiola, A., Alvarado-Beltrán, C. G., Hurtado-Macías, A., Orozco-Carmona, V. M., Almaral-Sánchez, J. L., Sepúlveda-Guzmán, S., & Castro-Beltrán, A. (2022). The Use of Recycled PET for the Synthesis of New Mechanically Improved PVP Composite Nanofibers. Polymers, 14(14), 2882. https://doi.org/10.3390/polym14142882