The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Characterizations
3. Results and Discussion
3.1. Photophysical Properties of TPE in Binary Solvents
3.2. Photophysical Properties of TPE in THF Solvent
3.3. Conversion of TPE Transforming from a Dissolved State to a Solid-State
3.4. Photophysical Properties of TPE Derivatives
3.5. Theoretic Calculation and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, J.D.; Xie, Z.L.; Lam, J.W.Y.; Cheng, L.; Chen, H.Y.; Qiu, C.F.; Kwok, H.S.; Zhan, X.W.; Liu, Y.Q.; Zhu, D.B.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, X.; Liu, Y.; Zhou, H.; Chen, W.; Sun, G.; Su, J.; Ma, X.; Tian, H. Tunable Photoluminescence Including White-Light Emission Based on Noncovalent Interaction-Locked N,N′-Disubstituted Dihydrodibenzo[a,c]Phenazines. Adv. Opt. Mater. 2018, 6, 1800074. [Google Scholar] [CrossRef]
- He, Z.; Zhao, W.; Lam, J.W.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B.Z. White Light Emission from a Single Organic Molecule with Dual Phosphorescence at Room Temperature. Nat. Commun. 2017, 8, 416. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, P.; Fan, J.; Qiao, X.; Yang, D.; Dai, Y.; Sun, Q.; Qin, A.; Tang, B.Z.; Ma, D. Unraveling the Important Role of High-Lying Triplet–Lowest Excited Singlet Transitions in Achieving Highly Efficient Deep-Blue AIE-Based OLEDs. Adv. Mater. 2021, 33, 2006953. [Google Scholar] [CrossRef]
- Ding, D.; Li, K.; Liu, B.; Tang, B.Z. Bioprobes Based on AIE Fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453. [Google Scholar] [CrossRef]
- Mao, L.; Jiang, Y.; Ouyang, H.; Feng, Y.; Li, R.; Zhang, X.; Nie, Z.; Wei, Y. Revealing the Distribution of Aggregation-Induced Emission Nanoparticles via Dual-Modality Imaging with Fluorescence and Mass Spectrometry. Research 2021, 2021, 9784053. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Zhu, Z.; Zhao, W.; Yan, C.; Liu, Z.; Liu, M.; Zhao, X.; Tian, H.; Zhu, W.H. Spatiotemporal Visualization of Cell Membrane with Amphiphilic Aggregation-Induced Emission-Active Sensor. CCS Chem. 2021, 4, 1619–1632. [Google Scholar] [CrossRef]
- Hu, F.; Xu, S.; Liu, B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Adv. Mater. 2018, 30, 1801350. [Google Scholar] [CrossRef]
- Zhu, W.; Kang, M.; Wu, Q.; Zhang, Z.; Wu, Y.; Li, C.; Li, K.; Wang, L.; Wang, D.; Tang, B.Z. Zwitterionic AIEgens: Rational Molecular Design for NIR-II Fluorescence Imaging-Guided Synergistic Phototherapy. Adv. Funct. Mater. 2021, 31, 2007026. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Guo, Z.; Zhang, S.; Yan, C.; Tian, H.; Zhu, W.H. High-Fidelity Trapping of Spatial–Temporal Mitochondria with Rational Design of Aggregation-Induced Emission Probes. Adv. Funct. Mater. 2019, 29, 1808153. [Google Scholar] [CrossRef]
- Hu, R.; Zhou, T.; Li, B.; Kwok, R.T.; Shen, J.; Qin, A.; Tang, B.Z. Selective Viable Cell Discrimination by a Conjugated Polymer Featuring Aggregation-Induced Emission Characteristic. Biomaterials 2020, 230, 119658. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, H.; Yang, J.; Fang, M.; Ding, D.; Tang, B.Z.; Li, Z. High Performance of Simple Organic Phosphorescence Host–Guest Materials and Their Application in Time-Resolved Bioimaging. Adv. Mater. 2021, 33, 2007811. [Google Scholar] [CrossRef]
- Wang, R.; Gu, X.; Li, Q.; Gao, J.; Shi, B.; Xu, G.; Zhu, T.; Tian, H.; Zhao, C. Aggregation Enhanced Responsiveness of Rationally Designed Probes to Hydrogen Sulfide for Targeted Cancer Imaging. J. Am. Chem. Soc. 2020, 142, 15084–15090. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Su, H.; Lin, G.; Li, S.; Yu, X.; Qin, A.; Zhao, Z.; Zhang, Z.; Tang, B.Z. Targeted Imaging of EGFR Overexpressed Cancer Cells by Brightly Fluorescent Nanoparticles Conjugated with Cetuximab. Nanoscale 2016, 8, 15027–15032. [Google Scholar] [CrossRef]
- Hu, F.; Mao, D.; Cai, X.; Wu, W.; Kong, D.; Liu, B. A Light-Up Probe with Aggregation-Induced Emission for Real-Time Bio-Orthogonal Tumor Labeling and Image-Guided Photodynamic Therapy. Angew. Chem. Int. Ed. 2018, 57, 10182–10186. [Google Scholar] [CrossRef]
- Wu, W.; Mao, D.; Hu, F.; Xu, S.; Chen, C.; Zhang, C.J.; Cheng, X.; Yuan, Y.; Ding, D.; Kong, D.; et al. A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy. Adv. Mater. 2017, 29, 1700548. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, C.; Meng, H.; Li, R.; Mao, L.; Hu, D.; Tian, M.; Yuan, J.; Wei, Y. Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 7987–7996. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y. Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. ACS Appl. Mater. Interfaces 2013, 5, 1943–1947. [Google Scholar] [CrossRef]
- Li, B.; Wang, W.; Song, W.; Zhao, Z.; Tan, Q.; Zhao, Z.; Tang, L.; Zhu, T.; Yin, J.; Bai, J.; et al. Antiviral and Anti-Inflammatory Treatment with Multifunctional Alveolar Macrophage-Like Nanoparticles in a Surrogate Mouse Model of COVID-19. Adv. Sci. 2021, 8, 2003556. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, H.; Zhang, X.; Pang, J.; Li, Y.; Li, K.; Wu, Y.; Li, S.; Zhu, J.; Wei, Y.; et al. Highly-Sensitive Optical Organic Vapor Sensor through Polymeric Swelling Induced Variation of Fluorescent Intensity. Nat. Commun. 2018, 9, 3799. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ren, J.; Wang, Y.; Tian, Y.; Liu, Z.; Xiao, X.; Yang, J.; Fang, M.; Li, Z. Force-Induced Turn-On Persistent Room-Temperature Phosphorescence in Purely Organic Luminogen. Angew. Chem. Int. Ed. 2021, 60, 12335–12340. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Fan, J.; Liu, X.; Zhao, Z.; Tang, B.Z. Photomechanical Luminescence from Through-Space Conjugated AIEgens. Angew. Chem. Int. Ed. 2020, 59, 8828–8832. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Jiang, T.; Wang, J.; Ma, X.; Tian, H. Real-Time Visual Monitoring of Kinetically Controlled Self-Assembly. Angew. Chem. Int. Ed. 2021, 60, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, S.; Zhang, X.; Gao, L.; Wei, Y.; Ji, Y. Detecting Topology Freezing Transition Temperature of Vitrimers by AIE Luminogens. Nat. Commun. 2019, 10, 3165. [Google Scholar] [CrossRef][Green Version]
- Li, C.; Zhang, X.; Luo, L.; Jiang, L.; Gao, L. Integrin-Mimetic Mechanosensory Elastomer with Fluorescence Probe for Monitoring Chain Deformation in Situ. CCS Chem. 2021, 4, 1065–1073. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, Z.; Dong, Y.; Di, C.; Qin, A.; Hong, Y.; Ji, L.; Zhu, Z.; Jim, C.K.W.; Yu, G.; et al. Fluorescence Enhancements of Benzene-Cored Luminophors by Restricted Intramolecular Rotations: AIE and AIEE Effects. Chem. Commun. 2007, 1, 70–72. [Google Scholar] [CrossRef]
- Leung, N.L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J.W.; Tang, B.Z. Restriction of Intramolecular Motions: The General Mechanism behind Aggregation-Induced Emission. Chem. Eur. J. 2014, 20, 15349–15353. [Google Scholar] [CrossRef]
- Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. Toward Quantitative Prediction of Molecular Fluorescence Quantum Efficiency: Role of Duschinsky Rotation. J. Am. Chem. Soc. 2007, 129, 9333–9339. [Google Scholar] [CrossRef]
- Chung, J.W.; Yoon, S.J.; An, B.K.; Park, S.Y. High-Contrast on/off Fluorescence Switching via Reversible E–Z Isomerization of Diphenylstilbene Containing the α-Cyanostilbenic Moiety. J. Phys. Chem. C 2013, 117, 11285–11291. [Google Scholar] [CrossRef]
- Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. Tuning of Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of Imidazo[1,2-a]Pyridine in Rigid Matrices by Substitution Effect. J. Org. Chem. 2013, 78, 2482–2489. [Google Scholar] [CrossRef] [PubMed]
- Dommett, M.; Rivera, M.; Smith, M.T.H.; Crespo-Otero, R. Molecular and Crystalline Requirements for Solid State Fluorescence Exploiting Excited State Intramolecular Proton Transfer. J. Mater. Chem. C 2020, 8, 2558–2568. [Google Scholar] [CrossRef]
- Peng, Q.; Shuai, Z. Molecular Mechanism of Aggregation-induced Emission. Aggregate 2021, 2, e91. [Google Scholar] [CrossRef]
- Tu, Y.; Liu, J.; Zhang, H.; Peng, Q.; Lam, J.W.Y.; Tang, B.Z. Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom-Containing AIE Systems. Angew. Chem. Int. Ed. 2019, 58, 14911–14914. [Google Scholar] [CrossRef]
- Li, Q.; Blancafort, L. A Conical Intersection Model to Explain Aggregation Induced Emission in Diphenyl Dibenzofulvene. Chem. Commun. 2013, 49, 5966–5968. [Google Scholar] [CrossRef]
- Peng, X.L.; Ruiz-Barragan, S.; Li, Z.S.; Li, Q.S.; Blancafort, L. Restricted Access to a Conical Intersection to Explain Aggregation Induced Emission in Dimethyl Tetraphenylsilole. J. Mater. Chem. C 2016, 4, 2802–2810. [Google Scholar] [CrossRef]
- Ma, H.; Shi, W.; Ren, J.; Li, W.; Peng, Q.; Shuai, Z. Electrostatic Interaction-Induced Room-Temperature Phosphorescence in Pure Organic Molecules from QM/MM Calculations. J. Phys. Chem. Lett. 2016, 7, 2893–2898. [Google Scholar] [CrossRef]
- Yang, W.; Ling, B.; Hu, B.; Yin, H.; Mao, J.; Walsh, P.J. Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Umpolung 1,4-Addition of Aryl Iodides to Enals. Angew. Chem. Int. Ed. 2020, 59, 161–166. [Google Scholar] [CrossRef][Green Version]
- Yin, P.A.; Wan, Q.; Niu, Y.; Peng, Q.; Wang, Z.; Li, Y.; Qin, A.; Shuai, Z.; Tang, B.Z. Theoretical and Experimental Investigations on the Aggregation-Enhanced Emission from Dark State: Vibronic Coupling Effect. Adv. Electron. Mater. 2020, 6, 2000255. [Google Scholar] [CrossRef]
- Yang, J.; Chi, Z.; Zhu, W.; Tang, B.Z.; Li, Z. Aggregation-Induced Emission: A Coming-of-Age Ceremony at the Age of Eighteen. Sci. China Chem. 2019, 62, 1090–1098. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Mi, B.; Tang, Y.; Häussler, M.; Tong, H.; Dong, Y.; Lam, J.W.Y.; Ren, Y.; Sung, H.H.Y.; et al. Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. J. Phys. Chem. B 2005, 109, 10061–10066. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; He, Z.; Tang, B.Z. Room-Temperature Phosphorescence from Organic Aggregates. Nat. Rev. Mater. 2020, 5, 869–885. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Costanzo, L.D.; Bakayoko, G.; Panunzi, B. A Novel DR/NIR T-Shaped AIEgen: Synthesis and X-Ray Crystal Structure Study. Crystals 2020, 10, 269. [Google Scholar] [CrossRef][Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Ma, X.; Chi, W.; Han, X.; Wang, C.; Liu, S.; Liu, X.; Yin, J. Aggregation-Induced Emission or Aggregation-Caused Quenching ? Impact of Covalent Bridge between Tetraphenylethene and Naphthalimide. Chin. Chem. Lett. 2021, 32, 1790–1794. [Google Scholar] [CrossRef]
- Wang, C.; Qiao, Q.; Chi, W.; Chen, J.; Liu, W.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X.; Zhou, W.; et al. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew. Chem. 2020, 59, 10160–10172. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J.; Lam, J.W.Y.; Sung, H.H.Y.; Williams, I.D.; Zhong, Y.; Wong, K.S.; Peña-Cabrera, E.; et al. Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. J. Phys. Chem. C 2009, 113, 15845–15853. [Google Scholar] [CrossRef]
- Gao, B.R.; Wang, H.Y.; Hao, Y.W.; Fu, L.M.; Fang, H.H.; Jiang, Y.; Wang, L.; Chen, Q.D.; Xia, H.; Pan, L.Y.; et al. Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of Intramolecular Charge Transfer State. J. Phys. Chem. B 2010, 114, 128–134. [Google Scholar] [CrossRef]
- Guan, J.; Shen, C.; Peng, J.; Zheng, J. What Leads to Aggregation-Induced Emission? J. Phys. Chem. Lett. 2021, 12, 4218–4226. [Google Scholar] [CrossRef]
- Guan, J.; Wei, R.; Prlj, A.; Peng, J.; Lin, K.H.; Liu, J.; Han, H.; Corminboeuf, C.; Zhao, D.; Yu, Z.; et al. Direct Observation of Aggregation-Induced Emission Mechanism. Angew. Chem. Int. Ed. 2020, 59, 14903–14909. [Google Scholar] [CrossRef]
- Rouillon, J.; Monnereau, C.; Andraud, C. Reevaluating the Solution Photophysics of Tetraphenylethylene at the Origin of Their Aggregation-Induced Emission Properties. Chem. Eur. J. 2021, 27, 8003–8007. [Google Scholar] [CrossRef]
- Kohmoto, S.; Tsuyuki, R.; Hara, Y.; Kaji, A.; Takahashi, M.; Kishikawa, K. Dual-Mode of Assembly of Anthracene-Based Imidazolium Salts Both in Non-Polar Organic Solvents and in Aqueous Solution. Chem. Commun. 2011, 47, 9158–9160. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, B.; Li, X.; Dong, J. Converse Transitions between the Micelles and the Vesicles of Pyrrolidone-Based AIE Amphiphilic Copolymers in Polar and Apolar Solvents. RSC Adv. 2019, 9, 28102–28111. [Google Scholar] [CrossRef][Green Version]
- Zhu, Y.X.; Wei, Z.W.; Pan, M.; Wang, H.P.; Zhang, J.Y.; Su, C.Y. A New TPE-Based Tetrapodal Ligand and Its Ln(III) Complexes: Multi-Stimuli Responsive AIE (Aggregation-Induced Emission)/ILCT (Intraligand Charge Transfer)-Bifunctional Photoluminescence and NIR Emission Sensitization. Dalton Trans. 2016, 45, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; Li, Y.; Yu, J. Solvatochromic AIE Luminogens as Supersensitive Water Detectors in Organic Solvents and Highly Efficient Cyanide Chemosensors in Water. Chem. Sci. 2014, 5, 2710–2716. [Google Scholar] [CrossRef]
- Takeda, T.; Yamamoto, S.; Mitsuishi, M.; Akutagawa, T. Alkylamide-substituted tetraphenylethylene: Three modes of fluorescence based on a hydrogen-bonded excimer. Org. Biomol. Chem. 2016, 14, 8922. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shi, L.; Yan, C.; Guo, Z.; Chi, W.; Wei, J.; Liu, W.; Liu, X.; Tian, H.; Zhu, W.H. De Novo Strategy with Engineering Anti-Kasha/Kasha Fluorophores Enables Reliable Ratiometric Quantification of Biomolecules. Nat. Commun. 2020, 11, 793. [Google Scholar] [CrossRef][Green Version]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chen, Y.; Lam, J.W.Y.; Kwok, R.T.K.; Liu, B.; Tang, B.Z. Aggregation-Induced Emission: Fundamental Understanding and Future Developments. Mater. Horiz. 2019, 6, 428–433. [Google Scholar] [CrossRef]
- Liu, S.; Feng, G.; Tang, B.Z.; Liu, B. Recent Advances of AIE Light-up Probes for Photodynamic Therapy. Chem. Sci. 2021, 12, 6488–6506. [Google Scholar] [CrossRef]
- Cai, Y.; Du, L.; Samedov, K.; Gu, X.; Qi, F.; Sung, H.H.Y.; Patrick, B.O.; Yan, Z.; Jiang, X.; Zhang, H.; et al. Deciphering the Working Mechanism of Aggregation-Induced Emission of Tetraphenylethylene Derivatives by Ultrafast Spectroscopy. Chem. Sci. 2018, 9, 4662–4670. [Google Scholar] [CrossRef][Green Version]
- Liu, S.J.; Cheng, Y.H.; Li, Y.Y.; Chen, M.; Lam, J.W.Y.; Tang, B.Z. Manipulating Solid-state Intramolecular Motion toward Controlled Fluorescence Patterns. ACS Nano 2020, 14, 2090–2098. [Google Scholar] [CrossRef]
- Peng, Q.; Ma, H.; Shuai, Z. Theory of Long-Lived Room-Temperature Phosphorescence in Organic Aggregates. Acc. Chem. Res. 2021, 54, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhu, X.; Li, Y.; Chen, H.; Zhuang, Z.; Shen, P.; Zeng, J.; Chi, J.; Ma, D.; Zhao, Z.; et al. High-Performance Hybrid White OLEDs with Ultra-Stable Emission Color and Small Efficiency Roll-Off Achieved by Incorporating a Deep-Blue Fluorescent Neat Film. Adv. Opt. Mater. 2021, 9, 2100298. [Google Scholar] [CrossRef]
- Fang, M.; Fu, L.; Ferreira, R.A.S.; Carlos, L.D. White-Light Emitting Di-Ureasil Hybrids. Materials 2018, 11, 2246. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, X.; Shang, Y.; Chen, Z.R. Vinyl Groups Containing Tetraphenylethylene Derivatives as Fluorescent Probes Specific for Palladium and the Quenching Mechanism. Chin. J. Chem. 2021, 39, 1599–1605. [Google Scholar] [CrossRef]
- Fang, M.; Bispo, A.G., Jr.; Fu, L.; Ferreira, R.A.S.; Carlos, L.D. Efficient Green-Emitting Tb3+-Doped Di-Ureasil Coating Phosphors for near-UV Excited Light-Emitting Diodes. J. Lumin. 2020, 219, 116910. [Google Scholar] [CrossRef]
- Fang, M.; Fu, L.; Correia, S.F.H.; Ferreira, R.A.S.; Carlos, L.D. Highly Efficient Luminescent Polycarboxylate Lanthanide Complexes Incorporated into Di-Ureasils by an in-Situ Sol-Gel Process. Polymers 2018, 10, 434. [Google Scholar] [CrossRef][Green Version]
- Shi, W.; Xing, F.; Bai, Y.L.; Hu, M.; Zhao, Y.; Li, M.X.; Zhu, S. High Sensitivity Viologen for a Facile and Versatile Sensor of Base and Solvent Polarity in Solution and Solid State in Air Atmosphere. ACS Appl. Mater. Interfaces 2015, 7, 14493–14500. [Google Scholar] [CrossRef]
- Wang, R.; Zenobi, R. Evolution of the Solvent Polarity in an Electrospray Plume. J. Am. Soc. Mass Spectrom. 2010, 21, 378–385. [Google Scholar] [CrossRef][Green Version]
- Xu, C.; Zou, H.; Zhao, Z.; Zheng, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Sung, H.H.Y.; Williams, I.D.; Chen, S.; Zheng, L.; et al. Turning on Light Emission of a Dark Pro-Aggregation-Induced Emission Luminogen in Aqueous Media Through Reductase-Modulated Derotation. Adv. NanoBiomed Res. 2021, 1, 2000080. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, T.; Li, Z.; Peng, Q.; Yi, Y.; Shuai, Z. Influences of Conjugation Extent on the Aggregation-Induced Emission Quantum Efficiency in Silole Derivatives: A Computational Study. Chem. Asian J. 2015, 10, 2154–2161. [Google Scholar] [CrossRef]
- Shuai, Z.; Peng, Q. Organic Light-Emitting Diodes: Theoretical Understanding of Highly Efficient Materials and Development of Computational Methodology. Natl. Sci. Rev. 2017, 4, 224–239. [Google Scholar] [CrossRef][Green Version]
- Zhang, G.; Chen, Z.; Aldred, M.P.; Hu, Z.; Chen, T.; Huang, Z.; Meng, X.G.; Zhu, M.Q. Direct validation of the restriction of intramolecular rotation hypothesis via the synthesis of novel ortho-methyl substituted tetraphenylethenes and their application in cell imaging. Chem. Commun. 2014, 50, 12058. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, R.; Guo, D.; Zang, Q.; Li, J.; Wang, Y.; Zheng, Y.S.; Tang, B.Z.; Zhang, H. Diagnostic Absolute Configuration Determination of Tetraphenylethene Core-Based Chiral Aggregation-Induced Emission Compounds: Particular Fingerprint Bands in Comprehensive Chiroptical Spectroscopy. J. Phys. Chem. C 2017, 121, 20947–20954. [Google Scholar] [CrossRef]
- Gao, Y.J.; Chang, X.P.; Liu, X.Y.; Li, Q.S.; Cui, G.L.; Thiel, W. Excited-state decay paths in tetraphenylethene derivatives. J. Phys. Chem. A 2017, 121, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
Density Functional | Excited States | Transitions (Amplitude) | Energy Gap (eV) | Wavelength (nm) | Oscillator Strength |
---|---|---|---|---|---|
B3pw91 | Excited state 1 | HOMO → LUMO (0.972) | 3.61 | 342 | 0.538 |
Excited state 2 | HOMO-5 → LUMO (0.034) HOMO-1 → LUMO (0.091) HOMO → LUMO+1 (0.832) | 4.31 | 287 | 0.003 | |
Excited state 3 | HOMO-6 → LUMO (0.064) HOMO-4 → LUMO (0.031) HOMO → LUMO+2 (0.886) | 4.44 | 279 | 0.185 | |
M06-2x | Excited state 1 | HOMO → LUMO (0.970) | 4.05 | 306 | 0.628 |
Excited state 2 | HOMO-5 → LUMO (0.028) HOMO-3 → LUMO+2 (0.035)HOMO-2 → LUMO+3 (0.030)HOMO-1 → LUMO (0.185) HOMO → LUMO+1 (0.637) | 4.91 | 253 | 0.001 | |
Excited state 3 | HOMO-6 → LUMO (0.077) HOMO-3 → LUMO+3 (0.025)HOMO → LUMO+2 (0.770) HOMO → LUMO+4 (0.029) | 5.11 | 243 | 0.277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, M.; Wei, W.; Li, R.; Mao, L.; Wang, Y.; Guan, Y.; Chen, Q.; Shuai, Z.; Wei, Y. The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States. Polymers 2022, 14, 2880. https://doi.org/10.3390/polym14142880
Fang M, Wei W, Li R, Mao L, Wang Y, Guan Y, Chen Q, Shuai Z, Wei Y. The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States. Polymers. 2022; 14(14):2880. https://doi.org/10.3390/polym14142880
Chicago/Turabian StyleFang, Ming, Wenjuan Wei, Ruoxin Li, Liucheng Mao, Yuanheng Wang, Yan Guan, Qiang Chen, Zhigang Shuai, and Yen Wei. 2022. "The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States" Polymers 14, no. 14: 2880. https://doi.org/10.3390/polym14142880