Influences of the Periodicity in Molecular Architecture on the Phase Diagrams and Microphase Transitions of the Janus Double-Brush Copolymer with a Loose Graft
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. Calculation Methods
3. Results and Discussion
3.1. Triangle Phase Diagrams
3.2. The Critical Values for the Order–Disorder Transitions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviation | Full Name |
---|---|
2D | 2 Dimensions |
3D | 3 Dimensions |
BDO | 1,4-Butanediol |
[Bmim][PF6] | Hydrophobic ionic liquid 1-butyl-3-methylimidazole phosphorus hexafluoride |
CSH | Core-shell hexagonal lattice phase |
DIS | Disordered phase |
FFTW | Fast Fourier Transform in the West |
GPC | Gel permeation chromatography |
HEX3 | Three-color hexagonal honeycomb phase |
HEX3I | Hexagon outside “two-color” hexagonal lattice phase |
LAM2 | “Two-color lamellar” phase |
LAM3 | Three-color lamellar phase |
LAMAB | Lamellar phase with alternating beads |
LAMBD | Lamellar phase with beads inside |
MC | Monte Carlo |
MDI | Diphenyl methane diisocyanate |
ODT | Order–disorder transitions |
OOT | Octagon-octagon-tetragon phase |
UV | Ultraviolet |
PDMA | Poly(N,N-dimethyl acrylamide) |
PDMA-b-PMMA | Diblock copolymer containing the poly(N,N-dimethyl acrylamide) and poly(methyl methacrylate) blocks |
PMMA | Poly(methyl methacrylate) |
PU | Polyurethane |
PU-g-PDMA/PMMA | Copolymer consisting of the PDMA and PMMA chains grafted at the same reactive site along the PU backbone |
PU-g-PDMA48/PMMA50 | The degree of polymerization for the PDMA and PMMA chains is 48 and 50, respectively, in the copolymer |
SCFT | Self-consistent mean field theory |
TEM | Transmission electron microscope |
TET2 | Two interpenetrating tetragonal lattice phase |
Variable | Physical Meaning |
---|---|
η | Lagrange multiplier to ensure an incompressibility constraint |
F | The free-energy density |
fi | Composition of the i segments in the copolymer, i = A, B, C... |
kB | Boltzmann constant |
Thermal energy | |
Flory–Huggins dimensionless exchange energy | |
Flory–Huggins interaction parameter between dissimilar segments i and j, where i, j = A, B, C... | |
Flory–Huggins dimensionless exchange energy at the order–disorder transition | |
Segregation strength | |
Segregation strength between dissimilar segments (blocks) i and j, where i, j = A, B, C... | |
The averaged segregation strength for one repeat subunit in the copolymer | |
Critical segregation strength for the order–disorder transitions | |
Li | Length of the arm i chain, i = A, B, C... |
Ratio between the lengths of the arm C and arm A chains | |
Critical ratio between the lengths of the arm C and arm A chains | |
m | Total number of chains in the system |
n | Architectural periodicity |
N | Total chain length of the copolymer |
Length of one repeat subunit in copolymer | |
for the i segments, i = A, B, C... | |
The partition function | |
The end-segment distribution function | |
The conjugate of the end-segment distribution function | |
The spatial coordinate vector | |
The copolymer’s radius of gyration | |
Segment length | |
Temperature of the system | |
Critical temperature for the order–disorder transition | |
The volume of the system | |
Hypothetical external potentials for the i segments, i = A, B, C... |
References
- Ahmed, E.; Womble, C.T.; Weck, M. Synthesis and Aqueous Self-Assembly of ABCD Bottlebrush Block Copolymers. Macromolecules 2020, 53, 9018–9025. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Miao, C.; Li, S.; Zhao, Y. Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB)mC miktobrush-coil terpolymers. Polym. Chem. 2020, 11, 3003–3017. [Google Scholar] [CrossRef]
- Hou, W.; Li, Z.; Xu, L.; Li, Y.; Shi, Y.; Chen, Y. High-Yield Synthesis of Molecular Bottlebrushes via PISA-Assisted Grafting-from Strategy. ACS Macro Lett. 2021, 10, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G.M.; He, Y.; Hao, S.; Choi, W.; Liu, Y.; Peng, J.; et al. Bottlebrush Polymers: From Controlled Synthesis, Self-Assembly, Properties to Applications. Prog. Polym. Sci. 2021, 116, 101387. [Google Scholar] [CrossRef]
- Lebedeva, I.O.; Zhulina, E.B.; Borisov, O.V. Self-Assembly of Bottlebrush Block Copolymers in Selective Solvent: Micellar Structures. Polymers 2021, 13, 1351. [Google Scholar] [CrossRef]
- Yin, J.; Ge, Z.; Liu, H.; Liu, S. Synthesis of amphiphilic copolymer brushes possessing alternating poly (methyl methacrylate) and poly(N-isopropylacrylamide) grafts via a combination of ATRP and click chemistry. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2608–2619. [Google Scholar] [CrossRef]
- Guo, Z.H.; Le, A.N.; Feng, X.; Choo, Y.; Liu, B.; Wang, D.; Wan, Z.; Gu, Y.; Zhao, J.; Li, V.; et al. Janus graft block copolymers: Design of a polymer architecture for independently tuned nanostructures and polymer properties. Angew. Chem. Int. Ed. 2018, 57, 8493–8497. [Google Scholar] [CrossRef]
- Choinopoulos, I. Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications. Polymers 2019, 11, 298. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Olsen, B.D.; Kornfield, J.A.; Grubbs, R.H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: The importance of side chain arrangement. J. Am. Chem. Soc. 2009, 131, 18525–18532. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; He, Y.; Jung, J.; Lin, Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 2016, 353, 1268. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Krys, P.; Tilton, R.D.; Matyjaszewski, K. Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules 2017, 50, 2942–2950. [Google Scholar] [CrossRef]
- Li, Y.; Zou, J.; Das, B.P.; Tsianou, M.; Cheng, C. Well-defined amphiphilic double-brush copolymers and their performance as emulsion surfactants. Macromolecules 2012, 45, 4623–4629. [Google Scholar] [CrossRef]
- Xia, Y.; Adibnia, V.; Huang, R.; Murschel, F.; Faivre, J.; Xie, G.; Olszewski, M.; Crescenzo, G.D.; Qi, W.; He, Z.; et al. Biomimetic bottlebrush polymer coatings for fabrication of ultralow fouling surfaces. Angew. Chem. Int. Ed. 2019, 131, 1322–1328. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z.; Burdynska, J.; Nese, A.; Zhou, Y.; Kean, Z.S.; Dobrynin, A.V.; Matyjaszewski, K.; Craig, S.L.; Sheiko, S.S. Sonication-Induced Scission of Molecular Bottlebrushes: Implications of the “Hairy” Architecture. Polymer 2016, 84, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Sheiko, S.S.; Sun, F.C.; Randall, A.; Shirvanyants, D.; Rubinstein, M.; Lee, H.; Matyjaszewski, K. Adsorption-Induced Scission of Carbon-Carbon Bonds. Nature 2006, 440, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, J.; Fang, J.; Sun, B. Ordered Microstructures Self-assembled from A2m+1BmCm Comblike Copolymers. J. Polym. Res. 2011, 18, 1053–1058. [Google Scholar] [CrossRef]
- Tulsi, D.K.; Simmons, D.S. Hierarchical Shape-Specified Model Polymer Nanoparticles via Copolymer Sequence Control. Macromolecules 2022, 55, 1957–1969. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, X.; Xiang, Z.; Qi, C. Amphiphilic Double-Brush Copolymers with a Polyurethane Backbone: A Bespoke Macromolecular Emulsifier for Ionic Liquid-in-Oil Emulsion. Langmuir 2021, 37, 2376–2385. [Google Scholar] [CrossRef]
- Lebedeva, N.V.; Nese, A.; Sun, F.C.; Matyjaszewski, K.; Sheiko, S.S. Anti-Arrhenius Cleavage of Covalent Bonds in Bottlebrush Macromolecules on Substrate. Proc. Natl. Acad. Sci. USA 2012, 109, 9276–9280. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Nese, A.; Matyjaszewski, K.; Sheiko, S.S. Molecular Tensile Machines: Anti-Arrhenius Cleavage of Disulfide Bonds. Macromolecules 2013, 46, 7196–7201. [Google Scholar] [CrossRef]
- Beyer, F.L.; Gido, S.P.; Büschl, C.; Iatrou, H.; Uhrig, D.; Mays, J.W.; Chang, M.Y.; Garetz, B.A.; Balsara, N.P.; Tan, N.B.; et al. Graft Copolymers with Regularly Spaced, Tetrafunctional Branch Points: Morphology and Grain Structure. Macromolecules 2000, 33, 2039–2048. [Google Scholar] [CrossRef]
- Hu, W.; Shao, Z.; Zhang, D.; Xu, Y. Phase Diagram of Hierarchical Structures Formed from A(BC)2B Multiblock Copolymers. Macromol. Theory Simul. 2019, 28, 1900004. [Google Scholar] [CrossRef]
- Sun, D.; Cho, J. Ring Gradient Copolymers as Amphiphiles in Their Ternary Blends with Two Linear Homopolymers. Polymer 2015, 66, 192–200. [Google Scholar] [CrossRef]
- Sun, D.; Cho, J. Change in Interfacial Properties of the Blends of Linear Homopolymers by Adding a Gradient Copolymer with Ring Architecture. Langmuir 2014, 30, 6596–6601. [Google Scholar] [CrossRef]
- Takano, A.; Wada, S.; Sato, S.; Araki, T.; Hirahara, K.; Kazama, T.; Kawahara, S.; Isono, Y.; Ohno, A.; Tanaka, N.; et al. Observation of Cylinder-Based Microphase-Separated Structures from ABC Star-Shaped Terpolymers Investigated by Electron Computerized Tomography. Macromolecules 2004, 37, 9941–9946. [Google Scholar] [CrossRef]
- Tzeremes, G.; Rasmussen, K.Ø.; Lookman, T.; Saxena, A. Efficient Computation of the Structural Phase Behavior of Block Copolymers. Phys. Rev. E 2002, 65, 041806. [Google Scholar] [CrossRef]
- Frigo, M.; Johnson, S.G. The Design and Implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Sun, Z.; Li, H.; An, L. Study of Morphology and Phase Diagram of the H-shaped (AC)B(CA) Ternary Block Copolymers using Self-Consistent Field Theory. Polymer 2009, 50, 4270–4280. [Google Scholar] [CrossRef]
- Wang, R.; Xu, T. Theoretical Study on Morphology of ABCD 4-Miktoarm Star Block Copolymer. Polymer 2007, 48, 4601–4608. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, R.; Xue, G. Morphology and Phase Diagram of Comb Block Copolymer Am+1(BC)m. J. Phys. Chem. B 2009, 113, 7462–7467. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, K.; Zhang, P.; Shi, A. A Strategy to Explore Stable and Metastable Ordered Phases of Block Copolymers. J. Phys. Chem. B 2013, 117, 5296–5305. [Google Scholar] [CrossRef] [PubMed]
- Gumus, B.; Herrera-Alonso, M.; Ramirez-Hernandez, A. Kinetically-Arrested Single-Polymer Nanostructures from Amphiphilic Mikto-Grafted Bottlebrushes in Solution: A Simulation Study. Soft Matter 2020, 16, 4969–4979. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, A.T.; Muller, A.J.; Lin, M.C.; Chen, H.L.; Jeng, U.S.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Influence of Macromolecular Architecture on the Crystallization of (PCL2)-b-(PS2) 4-Miktoarm Star Block Copolymers in Comparison to Linear PCL-b-PS Diblock Copolymer Analogues. Macromolecules 2009, 42, 8353–8364. [Google Scholar] [CrossRef]
- Li, Y.; Themistou, E.; Zou, J.; Das, B.P.; Tsianou, M.; Cheng, C. Facile Synthesis and Visualization of Janus Double-Brush Copolymers. ACS Macro Lett. 2012, 1, 52−56. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Wang, R. Disorder-to-Order Transition of Triblock Comb Copolymer Am+1(BC)m. Macromolecules 2011, 44, 6113–6120. [Google Scholar] [CrossRef]
- Olvera de La Cruz, M.; Sanchez, I.C. Theory of Microphase Separation in Graft and Star Copolymers. Macromolecules 1986, 19, 2501–2508. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, Z.; Hu, J. Order to disorder transition of comb copolymer Am+1Bm: A self-consistent field study. Polymer 2005, 46, 6201–6207. [Google Scholar] [CrossRef]
- Palyulin, V.V.; Potemkin, I.I. Microphase Separation in Melts of Double Comb Copolymers. Polym. Sci. Ser. A 2007, 49, 473–481. [Google Scholar] [CrossRef]
- Wessels, M.G.; Jayaraman, A. Self-assembly of Amphiphilic Polymers of Varying Architectures Near Attractive Surfaces. Soft Matter 2020, 16, 623–633. [Google Scholar] [CrossRef]
- Palyulin, V.V.; Potemkin, I.I. Microphase Separation of Double-Grafted Copolymers (Centipedes) with Gradient, Random, and Regular Sequence of the Branch Points. J. Chem. Phys. 2007, 127, 124903. [Google Scholar] [CrossRef]
Snapshots | Abbreviated Names | Symbols | Conformations |
---|---|---|---|
| CSH | | |
| LAM3 | | |
| TET2 | | |
| LAMAB | | |
| HEX3 | | |
| LAMBD | | |
| HEX3I | | |
| OOT | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Song, Y. Influences of the Periodicity in Molecular Architecture on the Phase Diagrams and Microphase Transitions of the Janus Double-Brush Copolymer with a Loose Graft. Polymers 2022, 14, 2847. https://doi.org/10.3390/polym14142847
Sun D, Song Y. Influences of the Periodicity in Molecular Architecture on the Phase Diagrams and Microphase Transitions of the Janus Double-Brush Copolymer with a Loose Graft. Polymers. 2022; 14(14):2847. https://doi.org/10.3390/polym14142847
Chicago/Turabian StyleSun, Dachuan, and Yang Song. 2022. "Influences of the Periodicity in Molecular Architecture on the Phase Diagrams and Microphase Transitions of the Janus Double-Brush Copolymer with a Loose Graft" Polymers 14, no. 14: 2847. https://doi.org/10.3390/polym14142847
APA StyleSun, D., & Song, Y. (2022). Influences of the Periodicity in Molecular Architecture on the Phase Diagrams and Microphase Transitions of the Janus Double-Brush Copolymer with a Loose Graft. Polymers, 14(14), 2847. https://doi.org/10.3390/polym14142847