Effects of Periodontal Splints on Biomechanical Behaviors in Compromised Periodontal Tissues and Cement Layer: 3D Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of the Geometric Models and Study Design
2.2. Finite Element Analysis (FEA)
3. Results
3.1. Maximum von Mises Stress on Periodontal Tissues in Non-splinted Models with Different Bone Levels
3.2. Maximum von Mises Stress on Periodontal Tissues Surrounding Splinted Teeth with Different Bone Levels
3.3. Maximum Principal Stresses on the Cement Layer and Maximum Von Mises Stresses on the Periodontal Splints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and Grading of Periodontitis: Framework and Proposal of a New Classification and Case Definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef] [Green Version]
- Kathariya, R.; Devanoorkar, A.; Golani, R.; Shetty, N.; Vallakatla, V.; Bhat, M.Y.S. To Splint or Not to Splint: The Current Status of Periodontal Splinting. J. Int. Acad. Periodontol. 2016, 18, 45–56. [Google Scholar]
- Jepsen, S.; Caton, J.G.; Albandar, J.M.; Bissada, N.F.; Bouchard, P.; Cortellini, P.; Demirel, K.; de Sanctis, M.; Ercoli, C.; Fan, J.; et al. Periodontal Manifestations of Systemic Diseases and Developmental and Acquired Conditions: Consensus Report of Workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions: Classification and Case Definitions for Periodontal Manifestations of Systemic Diseases and Developmental and Acquired Conditions. J. Periodontol. 2018, 89, S237–S248. [Google Scholar]
- Machtei, E.E.; Hirsch, I. Retention of Hopeless Teeth: The Effect on the Adjacent Proximal Bone Following Periodontal Surgery. J. Periodontol. 2007, 78, 2246–2252. [Google Scholar] [CrossRef] [Green Version]
- Kumbuloglu, O.; Saracoglu, A.; Özcan, M. Pilot Study of Unidirectional E-Glass Fibre-Reinforced Composite Resin Splints: Up to 4.5-Year Clinical Follow-Up. J. Dent. 2011, 39, 871–877. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Advancements in CAD/CAM Technology: Options for Practical Implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Q.; Yang, J.; Hou, J. A Digital Technique for Splinting Periodontally Compromised Mobile Teeth in the Mandibular Anterior Region. J. Prosthet. Dent. 2021, 125, 560–563. [Google Scholar] [CrossRef]
- Elfahl, B.N.; Mostafa, T.M.N. Polyetheretherketone Custom CAD-CAM Splint for Treatment of Periodontally Affected Mobile Anterior Teeth. J. Prosthet. Dent. 2022, 127, 210–212. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Eichberger, M.; Uhrenbacher, J.; Wimmer, T.; Edelhoff, D.; Schmidlin, P.R. Three-Unit Reinforced Polyetheretherketone Composite FDPs: Influence of Fabrication Method on Load-Bearing Capacity and Failure Types. Dent. Mater. J. 2015, 34, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Hahnel, S.; Wieser, A.; Lang, R.; Rosentritt, M. Biofilm Formation on the Surface of Modern Implant Abutment Materials. Clin. Oral Implant. Res. 2015, 26, 1297–1301. [Google Scholar] [CrossRef]
- Trivedi, S. Finite Element Analysis: A Boon to Dentistry. J. Oral Biol. Craniofacial Res. 2014, 4, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Luchian, I.; Martu, M.-A.; Tatarciuc, M.; Scutariu, M.M.; Ioanid, N.; Pasarin, L.; Kappenberg-Nitescu, D.C.; Sioustis, I.-A.; Solomon, S.M. Using FEM to Assess the Effect of Orthodontic Forces on Affected Periodontium. Appl. Sci. 2021, 11, 7183. [Google Scholar] [CrossRef]
- Bachiri, A.; Djebbar, N.; Boutabout, B.; Serier, B. Effect of Different Impactor Designs on Biomechanical Behavior in the Interface Bone-Implant: A Comparative Biomechanics Study. Comput. Methods Programs Biomed. 2020, 197, 105723. [Google Scholar] [CrossRef]
- Ubaldini, A.L.M.; Benetti, A.R.; Sato, F.; Pascotto, R.C.; Medina Neto, A.; Baesso, M.L.; Peutzfeldt, A. Challenges in luting fibre posts: Adhesion to the post and to the dentine. Dent. Mater. 2018, 34, 1054–1062. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.D.O.; Borges, A.L.S.; Araújo, R.M.; da Silva, J.M.F.; Bottino, M.A.; Kleverlaan, C.J.; de Jager, N. Effect of Different Materials and Undercut on the Removal Force and Stress Distribution in Circumferential Clasps during Direct Retainer Action in Removable Partial Dentures. Dent. Mater. 2020, 36, 179–186. [Google Scholar] [CrossRef]
- Pirmoradian, M.; Naeeni, H.A.; Firouzbakht, M.; Toghraie, D.; khabaz, M.K.; Darabi, R. Finite Element Analysis and Experimental Evaluation on Stress Distribution and Sensitivity of Dental Implants to Assess Optimum Length and Thread Pitch. Comput. Methods Programs Biomed. 2020, 187, 105258. [Google Scholar] [CrossRef]
- Vukicevic, A.M.; Zelic, K.; Milasinovic, D.; Sarrami-Foroushani, A.; Jovicic, G.; Milovanovic, P.; Djuric, M.; Filipovic, N.; Frangi, A.F. OpenMandible: An Open-Source Framework for Highly Realistic Numerical Modelling of Lower Mandible Physiology. Dent. Mater. 2021, 37, 612–624. [Google Scholar] [CrossRef]
- Dejak, B.; Młotkowski, A. A Comparison of Stresses in Molar Teeth Restored with Inlays and Direct Restorations, Including Polymerization Shrinkage of Composite Resin and Tooth Loading during Mastication. Dent. Mater. 2015, 31, e77–e87. [Google Scholar] [CrossRef]
- Kurgan, S.; Terzioglu, H.; Yilmaz, B. Stress Distribution in Reduced Periodontal Supporting Tissues Surrounding Splinted Teeth. Int. J. Periodontics Restor. Dent. 2014, 34, e93–e101. [Google Scholar] [CrossRef]
- Soares, P.B.F.; Fernandes Neto, A.J.; Magalhães, D.; Versluis, A.; Soares, C.J. Effect of Bone Loss Simulation and Periodontal Splinting on Bone Strain. Arch. Oral Biol. 2011, 56, 1373–1381. [Google Scholar] [CrossRef] [Green Version]
- Kettenbeil, A.K.; Reimann, S.; Reichert, C.; Keilig, L.; Jäger, A.; Bourauel, C. Numerical Simulation and Biomechanical Analysis of an Orthodontically Treated Periodontally Damaged Dentition. J. Orofac. Orthop. 2022, 83, 255–268. [Google Scholar] [CrossRef]
- Baghdadi, D.; Reimann, S.; Keilig, L.; Reichert, C.; Jäger, A.; Bourauel, C. Biomechanical Analysis of Initial Incisor Crowding Alignment in the Periodontally Reduced Mandible Using the Finite Element Method. J. Orofac. Orthop. 2019, 80, 184–193. [Google Scholar] [CrossRef]
- Geramy, A.; Adibrad, M.; Sahabi, M. The Effects of Splinting Periodontally Compromised Removable Partial Denture Abutments on Bone Stresses: A Three-Dimensional Finite Element Study. J. Dent. Sci. 2010, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Poiate, I.A.V.P.; de Vasconcellos, A.B.; de Santana, R.B.; Poiate, E. Three-Dimensional Stress Distribution in the Human Periodontal Ligament in Masticatory, Parafunctional, and Trauma Loads: Finite Element Analysis. J. Periodontol. 2009, 80, 1859–1867. [Google Scholar] [CrossRef]
- Uraba, A.; Nemoto, R.; Nozaki, K.; Inagaki, T.; Omori, S.; Miura, H. Biomechanical Behavior of Adhesive Cement Layer and Periodontal Tissues on the Restored Teeth with Zirconia RBFDPs Using Three-Kinds of Framework Design: 3D FEA Study. J. Prosthodont. Res. 2018, 62, 227–233. [Google Scholar] [CrossRef]
- Dommisch, H.; Walter, C.; Difloe-Geisert, J.C.; Gintaute, A.; Jepsen, S.; Zitzmann, N.U. Efficacy of Tooth Splinting and Occlusal Adjustment in Patients with Periodontitis Exhibiting Masticatory Dysfunction: A Systematic Review. J. Clin. Periodontol. 2021, 49, 149–166. [Google Scholar] [CrossRef]
- Hellsing, G. On the Regulation of Interincisor Bite Force in Man. J. Oral Rehabil. 1980, 7, 403–411. [Google Scholar] [CrossRef]
- Takahashi, J.M.F.K.; Dayrell, A.C.; Consani, R.L.X.; de Arruda Nóbilo, M.A.; Henriques, G.E.P.; Mesquita, M.F. Stress Evaluation of Implant-Abutment Connections under Different Loading Conditions: A 3D Finite Element Study. J. Oral Implantol. 2015, 41, 133–137. [Google Scholar] [CrossRef]
- Macedo, J.P.; Pereira, J.; Faria, J.; Pereira, C.A.; Alves, J.L.; Henriques, B.; Souza, J.C.M.; López-López, J. Finite Element Analysis of Stress Extent at Peri-Implant Bone Surrounding External Hexagon or Morse Taper Implants. J. Mech. Behav. Biomed. Mater. 2017, 71, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Saquib, S.; Abdullah, A.; Gotam, D.; Talib, N.; Muhammad, S.; Sultana, A. Comparative Evaluation of Flexural Strength and Flexural Modulus of Different Periodontal Splint Materials: An In Vitro Study. Appl. Sci. 2019, 9, 4197. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, M.; Živić, M.; Milosavljević, M. A Potential Application of Materials Based on a Polymer and CAD/CAM Composite Resins in Prosthetic Dentistry. J. Prosthodont. Res. 2021, 65, 137–147. [Google Scholar] [CrossRef]
- Su, J.; Cai, S. Effects of Quartz Splint Woven Fiber Periodontal Fixtures on Evaluating Masticatory Efficiency and Efficacy. Medicine (Baltimore) 2018, 97, e13056. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Meschia, G.; Cortesi, R.; Bressan, E.; Tomasi, C.; Ferro, R.; Stellini, E. In Vitro Comparison of the Flexibility of Different Splint Systems Used in Dental Traumatology. Dent. Traumatol. 2010, 26, 30–36. [Google Scholar] [CrossRef]
- Eminkahyagil, N.; Erkut, S. An Innovative Approach to Chairside Provisional Replacement of an Extracted Anterior Tooth: Use of Fiber-Reinforced Ribbon-Composites and a Natural Tooth. J. Prosthodont. 2006, 15, 316–320. [Google Scholar] [CrossRef]
- Graetz, C.; Ostermann, F.; Woeste, S.; Sälzer, S.; Dörfer, C.E.; Schwendicke, F. Long-Term Survival and Maintenance Efforts of Splinted Teeth in Periodontitis Patients. J. Dent. 2019, 80, 49–54. [Google Scholar] [CrossRef]
- Sonnenschein, S.K.; Betzler, C.; Rütters, M.A.; Krisam, J.; Saure, D.; Kim, T.-S. Long-Term Stability of Splinted Anterior Mandibular Teeth during Supportive Periodontal Therapy. Acta Odontol. Scand. 2017, 75, 475–482. [Google Scholar] [CrossRef]
- Ruggiero, M.M.; Soares Gomes, R.; Pedroso Bergamo, E.T.; Freitas, M.I.M.; Bonfante, E.A.; Del Bel Cury, A.A. Resin-Matrix Ceramics for Occlusal Veneers: Effect of Thickness on Reliability and Stress Distribution. Dent. Mater. 2021, 37, e131–e139. [Google Scholar] [CrossRef]
- Dejak, B.; Młotkowski, A. A Comparison of MvM Stress of Inlays, Onlays and Endocrowns Made from Various Materials and Their Bonding with Molars in a Computer Simulation of Mastication—FEA. Dent. Mater. 2020, 36, 854–864. [Google Scholar] [CrossRef]
- Campaner, L.M.; Silveira, M.P.M.; de Andrade, G.S.; Borges, A.L.S.; Bottino, M.A.; Dal Piva, A.M.d.O.; Lo Giudice, R.; Ausiello, P.; Tribst, J.P.M. Influence of Polymeric Restorative Materials on the Stress Distribution in Posterior Fixed Partial Dentures: 3D Finite Element Analysis. Polymers (Basel) 2021, 13, 758. [Google Scholar] [CrossRef]
- Penteado, M.M.; Tribst, J.P.M.; Jurema, A.L.B.; Saavedra, G.S.F.A.; Borges, A.L.S. Influence of resin cement rigidity on the stress distribution of resin-bonded fixed partial dentures. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An Emerging Biomaterial for Oral Implants and Dental Prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef] [PubMed]
Material/Structure | Thickness (mm) | Young’s Modulus (GPa) | Poisson’s Ratio | References |
---|---|---|---|---|
PEEK | 1.0/0.7 | 4.1 | 0.45 | [9] |
FRC | 1.0 | 37 | 0.3 | - |
Titanium | 1.2 | 110 | 0.35 | [14] |
Resin cement | 0.1 | 7.3 | 0.3 | [15] |
Tooth | - | 18.6 | 0.3217 | [16] |
Cortical bone | 2 | 13.7 | 0.318 | [14,17] |
Spongy bone | - | 1.37 | 0.3 | [17] |
Periodontal ligament | 0.2 | 0.069 | 0.45 | [17,18] |
Model | Bone Level (%) | ||||||
---|---|---|---|---|---|---|---|
Tooth | 43 | 42 | 41 | 31 | 32 | 33 | |
111111 | 75 | 75 | 75 | 75 | 75 | 75 | |
112211 | 75 | 75 | 50 | 50 | 75 | 75 | |
113311 | 75 | 75 | 30 | 30 | 75 | 75 | |
123321 | 75 | 50 | 30 | 30 | 50 | 75 | |
133331 | 75 | 30 | 30 | 30 | 30 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Tian, M.; Zhong, S.; Bai, S. Effects of Periodontal Splints on Biomechanical Behaviors in Compromised Periodontal Tissues and Cement Layer: 3D Finite Element Analysis. Polymers 2022, 14, 2835. https://doi.org/10.3390/polym14142835
Liu Y, Fang M, Zhao R, Liu H, Tian M, Zhong S, Bai S. Effects of Periodontal Splints on Biomechanical Behaviors in Compromised Periodontal Tissues and Cement Layer: 3D Finite Element Analysis. Polymers. 2022; 14(14):2835. https://doi.org/10.3390/polym14142835
Chicago/Turabian StyleLiu, Yuchen, Ming Fang, Ruifeng Zhao, Hengyan Liu, Min Tian, Sheng Zhong, and Shizhu Bai. 2022. "Effects of Periodontal Splints on Biomechanical Behaviors in Compromised Periodontal Tissues and Cement Layer: 3D Finite Element Analysis" Polymers 14, no. 14: 2835. https://doi.org/10.3390/polym14142835
APA StyleLiu, Y., Fang, M., Zhao, R., Liu, H., Tian, M., Zhong, S., & Bai, S. (2022). Effects of Periodontal Splints on Biomechanical Behaviors in Compromised Periodontal Tissues and Cement Layer: 3D Finite Element Analysis. Polymers, 14(14), 2835. https://doi.org/10.3390/polym14142835