Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
3. Results and Discussion
3.1. Differences in the Spreading Behavior of Oil Droplets on Teflon in Air and Deionized Water
3.2. Analysis of Oil Droplet Spreading Dynamics Based on HD and MKT Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, P. The wetting of leaf surfaces. Curr. Opin. Colloid Interface Sci. 2011, 16, 326–334. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; Tian, X.; Jiang, L.; Nie, F.; Huang, Z.; Zhai, J.; Bai, H. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643. [Google Scholar]
- Watson, G.S.; Gellender, M.; Watson, J.A. Self-propulsion of dew drops on lotus leaves: A potential mechanism for self-cleaning. Biofouling 2014, 30, 427–434. [Google Scholar] [CrossRef]
- Gharabaghi, M.; Aghazadeh, S. A review of the role of wetting and spreading phenomena on the flotation practice. Curr. Opin. Colloid Interface Sci. 2014, 19, 266–282. [Google Scholar] [CrossRef]
- Hamidian, R.; Lashkarbolooki, M.; Amani, H. Ion type adjustment with emphasize on the presence of NaCl existence; measuring interfacial tension, wettability and spreading of crude oil in the carbonate reservoir. J. Petrol. Sci. Eng. 2019, 182, 106266. [Google Scholar] [CrossRef]
- Jang, S.H.; Lee, G.; Han, Y.J.; Lee, S.Y.; Lee, H.K.; Yoo, E.S.; Cho, K.H.; Jung, J.W.; Choi, J. Synthesis and characterisation of dimeric triphenylmethane water-soluble dyes for high-speed inkjet printing. Dye. Pigment. 2021, 196, 109737. [Google Scholar] [CrossRef]
- Andreatta, F.; Lanzutti, A.; Aneggi, E.; Gagliardi, A.; Rondinella, A.; Simonato, M.; Fedrizzi, L. Degradation of PTFE non-stick coatings for application in the food service industry. Eng. Fail. Anal. 2020, 115, 104652. [Google Scholar] [CrossRef]
- Halake, K.; Bae, S.; Lee, J.; Cho, Y.; Jo, H.; Heo, J.; Park, K.; Kim, H.; Ju, H.; Kim, Y.; et al. Strategies for fabrication of hydrophobic porous materials based on polydimethylsiloxane for oil-water separation. Macromol. Res. 2019, 27, 109–114. [Google Scholar] [CrossRef]
- Hassan, G.; Yilbas, B.S.; Bahatab, S.; Al-Sharafi, A.; Al-Qahtani, H. A water droplet-cleaning of a dusty hydrophobic surface: Influence of dust layer thickness on droplet dynamics. Sci. Rep. 2020, 10, 14746. [Google Scholar] [CrossRef]
- Massinon, M.; Lebeau, F. Experimental method for the assessment of agricultural spray retention based on high-speed imaging of drop impact on a synthetic superhydrophobic surface. Biosyst. Eng. 2012, 112, 56–64. [Google Scholar] [CrossRef]
- Song, Y.; Huang, G.; Zheng, L.; Huang, Q.; Cao, L.; Li, F.; Zhao, P.; Zhang, L.; Cao, C. Polymer additives regulate the deposition behavior of pesticide droplets on target plants. Polym. Test. 2021, 93, 106958. [Google Scholar] [CrossRef]
- Song, M.; Hu, D.; Zheng, X.; Wang, L.; Yu, Z.; An, W.; Na, R.; Li, C.; Li, N.; Lu, Z.; et al. Enhancing droplet deposition on wired and curved superhydrophobic leaves. ACS Nano 2019, 13, 7966–7974. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi-Tash, O.; Kovalchuk, N.M.; Trybala, A.; Kuchin, I.V.; Starov, V. Kinetics of wetting and spreading of droplets over various substrates. Langmuir 2017, 33, 4367–4385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, J.P.; Yu, C.C.; Tanatsugu, Y.; Yasuzawa, M.; Shen, Y.L. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Sci. Rep. 2016, 6, 31847. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.C.; Trybala, A.; Starov, V.; Das, D.B. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 451, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Lagubeau, G.; Fontelos, M.A.; Josserand, C.; Maurel, A.; Pagneux, V.; Petitjeans, P. Spreading dynamics of drop impacts. J. Fluid Mech. 2012, 713, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fang, W.; Li, Y.; Yang, Q.; Li, M.; Li, Q.; Feng, X.; Song, Y. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nat. Commun. 2019, 10, 950. [Google Scholar] [CrossRef] [Green Version]
- Yarin, L.A. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Cazabat, A.M.; De Coninck, J.; Villette, S. Spreading of polymeric liquids at a microscopic scale. J. Petrol. Sci. Eng. 1998, 20, 213–216. [Google Scholar] [CrossRef]
- Raiyan, A.; Mclaughlin, T.S.; Annavarapu, R.K.; Sojoudi, H. Effect of super-amphiphobic macrotextures on dynamics of viscous liquid droplets. Sci. Rep. 2018, 8, 15344. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhang, Y.; Lee, D.J.; Peng, X.F. Spreading of completely wetting or partially wetting power-law fluid on solid surface. Langmuir 2007, 23, 9258–9262. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, X.; Duan, Y.; Min, Q. Energy-based model for capillary spreading of power-law liquids on a horizontal plane. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 403, 155–163. [Google Scholar] [CrossRef]
- Wang, X.D.; Lee, D.J.; Peng, X.F.; Lai, J.Y. Spreading dynamics and dynamic contact angle of non-Newtonian fluids. Langmuir 2007, 23, 8042–8047. [Google Scholar] [CrossRef] [PubMed]
- Starov, V.M.; Kosvintsev, S.R.; Velarde, M.G. Spreading of surfactant solutions over hydrophobic substrates. J. Colloid Interf. Sci. 2000, 227, 185–190. [Google Scholar] [CrossRef]
- Lee, K.S.; Ivanova, N.; Starov, V.M.; Hilal, N.; Dutschk, V. Kinetics of wetting and spreading by aqueous surfactant solutions. Adv. Colloid Interfac. 2008, 144, 54–65. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Y.; Lu, H.; Meng, Y.; Hu, G.; Tian, Y. Viscous force retards initial droplet spreading. J. Phys. Chem. C 2017, 121, 22054–22059. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 1986, 168, 195–220. [Google Scholar] [CrossRef]
- Voinov, O.V. Hydrodynamics of wetting. Fluid Dynam 1976, 11, 714–721. [Google Scholar] [CrossRef]
- Blake, T.D.; Haynes, J.M. Kinetics of liquid/liquid displacement. J. Colloid Interf. Sci. 1969, 30, 421–423. [Google Scholar] [CrossRef]
- Ranabothu, S.R.; Karnezis, C.; Dai, L.L. Dynamic wetting: Hydrodynamic or molecular-kinetic? J. Colloid Interf. Sci. 2005, 288, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Wang, X.; Duan, Y. A critical review of dynamic wetting by complex fluids: From Newtonian fluids to non-Newtonian fluids and nanofluids. Adv. Colloid Interfac. 2016, 236, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Bridging length and time scales in moving contact line problems. Sci. China Phys. Mech. 2016, 59, 114631. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, K.A.; Davis, S.H.; Kavehpour, H.P. Forced versus spontaneous spreading of liquids. Langmuir 2016, 32, 10153–10158. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Manica, R.; Yeung, A.; Xu, Z. Spontaneous displacement of high viscosity micrometer size oil droplets from a curved solid in aqueous solutions. Langmuir 2019, 35, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Petrov, J.G.; Ralston, J.; Schneemilch, M.; Hayes, R.A. Dynamics of partial wetting and dewetting of an amorphous fluoropolymer by pure liquids. Langmuir 2003, 19, 2795–2801. [Google Scholar] [CrossRef]
- Muradoglu, M.; Tasoglu, S. A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput. Fluids 2010, 39, 615–625. [Google Scholar] [CrossRef]
- Samsonov, V.M. On computer simulation of droplet spreading. Curr. Opin. Colloid Interface Sci. 2011, 16, 303–309. [Google Scholar] [CrossRef]
- Agarwal, S.; von Arnim, V.; Stegmaier, T.; Planck, H.; Agarwal, A. Role of surface wettability and roughness in emulsion separation. Sep. Purif. Technol. 2013, 107, 19–25. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Z.; He, L.; Luo, X.; Zhou, R.; Shi, K.; Su, J. The influences of special wetting surfaces on the dynamic behaviors of underwater oil droplet. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 543, 15–27. [Google Scholar] [CrossRef]
- Lü, Y.; Wang, Y.; Wang, S.; He, L.; Ye, T. Experimental and theoretical investigation of the spreading behaviors of oil droplets on the surfaces with different wettabilities. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 620, 126467. [Google Scholar]
- Wang, J.; Cao, Y.; Xing, Y.; Gui, X.; Li, G. Study on the wetting behavior between oil droplets and kaolinite substrate based on interaction force measurement and high-speed dynamic visualization. Colloid Interfac. Sci. 2022, 46, 100585. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Li, G.; Zou, Y.; Hao, X. Spreading kinetics of oil droplets over three different substrates. Energ. Source Part. A 2021, 43, 2189–2196. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Xing, Y.; Li, G.; Liao, Y.; Li, S.; An, M. Spreading behavior of oil droplets over polytetrafluoroethylene plates in deionized water. J. Disper. Sci. Technol. 2020, 41, 1984–1990. [Google Scholar] [CrossRef]
- de Ruijter, M.J.; De Coninck, J.; Oshanin, G. Droplet spreading: Partial wetting regime revisited. Langmuir 1999, 15, 2209–2216. [Google Scholar] [CrossRef] [Green Version]
- de Ruijter, M.J.; Charlot, M.; Voué, M.; De Coninck, J. Experimental evidence of several time scales in drop spreading. Langmuir 2000, 16, 2363–2368. [Google Scholar] [CrossRef]
- Li, R.; Manica, R.; Lu, Y.; Xu, Z. Role of surfactants in spontaneous displacement of high viscosity oil droplets from solid surfaces in aqueous solutions. J. Colloid Interf. Sci. 2020, 579, 898–908. [Google Scholar] [CrossRef]
- Kovalchuk, N.; Trybala, A.; Mahdi, F.; Starov, V. Kinetics of spreading of synergetic surfactant mixtures in the case of partial wetting. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 505, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, L.; Bonaccurso, E.; Venzmer, J. Dynamic wetting of hydrophobic polymers by aqueous surfactant and superspreader solutions. Langmuir 2013, 29, 14855–14864. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, L.Z. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures. Langmuir 2014, 30, 11640–11649. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, Z.; Chan, P.; Lee, Y.K.; Li, Z. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl. Surf. Sci. 2011, 257, 8857–8863. [Google Scholar] [CrossRef]
- Chandra, S.; Avedisian, C.T. On the collision of a droplet with a solid surface. P. Roy. Soc. A-Math. Phy. 1991, 432, 13–41. [Google Scholar] [CrossRef]
- Blake, T.D.; De Coninck, J. The influence of solid–liquid interactions on dynamic wetting. Adv. Colloid Interfac. 2002, 96, 21–36. [Google Scholar] [CrossRef]
- Primkulov, B.K.; Lin, F.; Xu, Z. Microscale liquid-liquid displacement dynamics: Molecular kinetic or hydrodynamic control. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 497, 336–343. [Google Scholar] [CrossRef] [Green Version]
Physical Parameters | Unit | Oleic Acid | Deionized Water |
---|---|---|---|
Density | kg/cm3 | 893.5 | 997.0 |
Viscosity | mPa s | 27.64 | 0.897 |
Air–liquid interfacial tension | mN/m | 33.80 | 72.80 |
Oil–water interfacial tension | mN/m | 16.35 | - |
Droplet diameter (in water) | mm | 3.14 | - |
Droplet diameter (in air) | mm | 3.05 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cao, Y.; Li, G. Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments. Polymers 2022, 14, 2828. https://doi.org/10.3390/polym14142828
Wang J, Cao Y, Li G. Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments. Polymers. 2022; 14(14):2828. https://doi.org/10.3390/polym14142828
Chicago/Turabian StyleWang, Junchao, Yijun Cao, and Guosheng Li. 2022. "Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments" Polymers 14, no. 14: 2828. https://doi.org/10.3390/polym14142828
APA StyleWang, J., Cao, Y., & Li, G. (2022). Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments. Polymers, 14(14), 2828. https://doi.org/10.3390/polym14142828