Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Chitosan Biguanidine Hydrochloride (CBg)
2.3. Preparation of CBg/PVP Film
2.4. Spectral Characterization of CBg and CBg/PVP Films
2.5. Mechanical Properties of CBg/PVP Membrane
2.6. Water Vapor Permeability
2.7. Antibacterial Experiment of CBg/PVP Film
2.8. Solubility
2.9. Application to Strawberries
3. Results
3.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.2. The Transmission Spectrum of the CBg/PVP Film
3.3. Film Thickness
3.4. Mechanical Properties
3.5. Water Vapor Permeability
3.6. Solubility
3.7. Antibacterial Activity
3.8. Application to Strawberries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adhanom, G. World hunger worsens. Bull. World Health Organ. 2021, 99, 544–545. [Google Scholar]
- Schmidt-Traub, G.; Obersteiner, M.; Mosnier, A. Fix the broken food system in three steps. Nature 2019, 569, 181–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Ma, W.; Chen, Y.; Navicha, W.B.; Wu, D.; Du, M. The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size. LWT-Food Sci. Technol. 2019, 103, 125–130. [Google Scholar] [CrossRef]
- Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrysiak, E.; Smith, S.; Ganjyal, G.M. Food Safety Interventions to Control Listeria monocytogenes in the Fresh Apple Packing Industry: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1705–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixido, N.; Vinas, I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables-A review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Burek, J.; Nutter, D.W. Environmental implications of perishables storage and retailing. Renew. Sustain. Energy Rev. 2020, 133, 110070. [Google Scholar] [CrossRef]
- Nor, S.M.; Ding, P. Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Res. Int. 2020, 134, 109208. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Cui, Y.; Barnes, M.; Satam, C.; Zhang, S.; Chowdhury, R.A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S.M.; et al. Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits. Adv. Mater. 2020, 32, e1908291. [Google Scholar] [CrossRef]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Salehi, F. Edible Coating of Fruits and Vegetables Using Natural Gums: A Review. Int. J. Fruit Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Onyeaka, H.; Obileke, K.; Makaka, G.; Nwokolo, N. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging. Polymers 2022, 14, 1126. [Google Scholar] [CrossRef] [PubMed]
- Suganya, A.; Shanmugvelayutham, G.; Hidalgo-Carrillo, J. Plasma Surface Modified Polystyrene and Grafted with Chitosan Coating for Improving the Shelf Lifetime of Postharvest Grapes. Plasma Chem. Plasma Process. 2018, 38, 1151–1168. [Google Scholar] [CrossRef]
- Kritchenkov, A.S.; Egorov, A.R.; Volkova, O.V.; Zabodalova, L.A.; Suchkova, E.P.; Yagafarov, N.Z.; Kurasova, M.N.; Dysin, A.P.; Kurliuk, A.V.; Shakola, T.V.; et al. Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives. Food Packag. Shelf Life 2020, 25, 100534. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Xu, X.; Tang, K.; Viet Ha, V.; Gao, P.; Chen, H.; Xiong, Y.L.; Sun, Q. Antimicrobial activities of irradiation-degraded chitosan fragments. Food Biosci. 2019, 29, 94–101. [Google Scholar] [CrossRef]
- Sikorski, D.; Bauer, M.; Frączyk, J.; Draczyński, Z. Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens. Polymers 2022, 14, 1690. [Google Scholar] [CrossRef]
- Wahba, M.I. Enhancement of the mechanical properties of chitosan. J. Biomater. Sci. Polym. Ed. 2020, 31, 350–375. [Google Scholar] [CrossRef]
- Xiao, N.-Y.; Zhang, X.-Q.; Ma, X.-Y.; Luo, W.-H.; Li, H.-Q.; Zeng, Q.-Y.; Zhong, L.; Zhao, W.-H. Construction of EVA/chitosan based PEG-PCL micelles nanocomposite films with controlled release of iprodione and its application in pre-harvest treatment of grapes. Food Chem. 2020, 331, 127277. [Google Scholar] [CrossRef]
- Wu, T.; Huang, J.; Jiang, Y.; Hu, Y.; Ye, X.; Liu, D.; Chen, J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem. 2018, 240, 361–369. [Google Scholar] [CrossRef]
- Xu, B.; Jacobs, M.I.; Kostko, O.; Ahmed, M. Guanidinium Group Remains Protonated in a Strongly Basic Arginine Solution. Chemphyschem 2017, 18, 1503–1506. [Google Scholar] [CrossRef] [Green Version]
- Salama, H.E.; Aziz, M.S.A.; Alsehli, M. Carboxymethyl cellulose/sodium alginate/chitosan biguanidine hydrochloride ternary system for edible coatings. Int. J. Biol. Macromol. 2019, 139, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Ranwa, S.; Kumar, G. Biodegradable Flexible Substrate Based on Chitosan/PVP Blend Polymer for Disposable Electronics Device Applications. J. Phys. Chem. B 2020, 124, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Halake, K.; Birajdar, M.; Kim, B.S.; Bae, H.; Lee, C.; Kim, Y.J.; Kim, S.; Kim, H.J.; Ahn, S.; An, S.Y. Recent application developments of water-soluble synthetic polymers. J. Ind. Eng. Chem. 2014, 20, 3913–3918. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef]
- Salama, H.E.; Saad, G.R.; Sabaa, M.W. Synthesis, characterization, and biological activity of cross-linked chitosan biguanidine loaded with silver nanoparticles. J. Biomater. Sci. Polym. Ed. 2016, 27, 1880–1898. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Abubaker, M.A.; Ding, L.; Zhang, J.; Yang, S.; Fan, Z. Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing. Mater. Sci. Eng. C 2021, 126, 112171. [Google Scholar] [CrossRef]
- Min, T.; Zhu, Z.; Sun, X.; Yuan, Z.; Zha, J.; Wen, Y. Highly efficient antifogging and antibacterial food packaging film fabricated by novel quaternary ammonium chitosan composite. Food Chem. 2020, 308, 125682. [Google Scholar] [CrossRef]
- Salama, H.E.; Aziz, M.S.A.; Sabaa, M.W. Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil. Int. J. Biol. Macromol. 2019, 139, 1162–1167. [Google Scholar] [CrossRef]
- Salama, H.E.; Aziz, M.S.A.; Sabaa, M.W. Novel biodegradable and antibacterial edible films based on alginate and chitosan biguanidine hydrochloride. Int. J. Biol. Macromol. 2018, 116, 443–450. [Google Scholar] [CrossRef]
- Suknuntha, K.; Tantishaiyakul, V.; Vao-Soongnern, V.; Espidel, Y.; Cosgrove, T. Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions. J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 1258–1264. [Google Scholar] [CrossRef]
- Zeng, M.; Xiao, H.; Zhang, X.; Sun, X.; Qi, C.; Wang, B. A Novel Chitosan/Polyvinyl Pyrrolidone (CS/PVP) Three-Dimensional Composite and Its Mechanism of Strength Improvement. J. Macromol. Sci. Part B 2011, 50, 1413–1422. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Sanchez, L.T.; Garcia, O.R.; Gutierrez, R.; Luna, J.C.; Villa, C.C. Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int. J. Food Sci. Technol. 2020, 55, 92–98. [Google Scholar] [CrossRef]
YM (MPa) | TS (MPa) | EB (%) | WVP (g/m2/day) | |
---|---|---|---|---|
1CBg/PVP | 6.50 ± 0.45 a | 19.85 ± 3.50 a | 23.28 ± 1.41 a | 301.17 ± 11.17 a |
3CBg/PVP | 8.74 ± 0.55 b | 33.32 ± 2.84 b | 17.87 ± 0.61 b | 154.21 ± 15.66 b |
5CBg/PVP | 10.16 ± 0.16 c | 41.43 ± 2.33 c | 13.25 ± 1.02 c | 138.64 ± 15.12 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, X.; Xie, J.; Hao, M.; Li, Y.; Wang, C.; Zhu, Z.; Wen, Y. Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits. Polymers 2022, 14, 2704. https://doi.org/10.3390/polym14132704
Jiao X, Xie J, Hao M, Li Y, Wang C, Zhu Z, Wen Y. Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits. Polymers. 2022; 14(13):2704. https://doi.org/10.3390/polym14132704
Chicago/Turabian StyleJiao, Xiangyu, Jiaxuan Xie, Mingda Hao, Yiping Li, Changtao Wang, Zhu Zhu, and Yongqiang Wen. 2022. "Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits" Polymers 14, no. 13: 2704. https://doi.org/10.3390/polym14132704
APA StyleJiao, X., Xie, J., Hao, M., Li, Y., Wang, C., Zhu, Z., & Wen, Y. (2022). Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits. Polymers, 14(13), 2704. https://doi.org/10.3390/polym14132704