Evaluating the Effect of Different Polymer and Composite Abutments on the Color Accuracy of Multilayer Pre-Colored Zirconia Polycrystal Dental Prosthesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, R.; Galli, M.; Chen, Z.; Mendonça, G.; Meirelles, L.; Wang, H.-L.; Chan, H.-L. Intraoral scanning reduces procedure time and improves patient comfort in fixed prosthodontics and implant dentistry: A systematic review. Clin. Oral. Investig. 2021, 25, 6517–6531. [Google Scholar] [CrossRef] [PubMed]
- Prechtel, A.; Reymus, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Comparison of various 3D printed and milled PAEK materials: Effect of printing direction and artificial aging on Martens parameters. Dent. Mater. 2020, 36, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Hickel, R.; Reymus, M. 3D Printing in Dentistry—State of the Art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef] [PubMed]
- You, S.-G.; You, S.-M.; Kang, S.-Y.; Bae, S.-Y.; Kim, J.-H. Evaluation of the adaptation of complete denture metal bases fabricated with dental CAD-CAM systems: An in vitro study. J. Prosthet. Dent. 2021, 125, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, I.; Wilkins, G.N. Milling machines in dentistry: A swiftly evolving technology. J. Craniofac. Surg. 2021, 32, 2259–2260. [Google Scholar] [CrossRef] [PubMed]
- Zotti, F.; Pappalardo, D.; Capocasale, G.; Sboarina, A.; Bertossi, D.; Albanese, M. Aesthetic dentistry, how you say and how you see: A 500-people survey on digital preview and color perception. Clin. Cosmet. Investig. Dent. 2020, 12, 377–389. [Google Scholar] [CrossRef]
- Blatz, M.B.; Chiche, G.; Bahat, O.; Roblee, R.; Coachman, C.; Heymann, H.O. Evolution of aesthetic dentistry. J. Dent. Res. 2019, 98, 1294–1304. [Google Scholar] [CrossRef]
- Itoh, E.; Furumura, M.; Furue, M. Rate of actual metal allergy prior to dental treatment in subjects complaining of possible metal allergy. Asian Pac. J. Allergy Immunol. 2020, 38, 186–189. [Google Scholar] [CrossRef]
- Gross, C.; Bergfeldt, T.; Fretwurst, T.; Rothweiler, R.; Nelson, K.; Stricker, A. Elemental analysis of commercial zirconia dental implants—Is “metal-free” devoid of metals? J. Mech. Behav. Biomed. Mater. 2020, 107, 103759. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, J.Z.; Jia, Y.G.; Lu, B.H.; Ren, L. TiO2 and PEEK reinforced 3D printing PMMA composite resin for dental denture base applications. Nanomaterials 2019, 9, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, G.S.; Kim, S.K.; Heo, S.J.; Koak, J.Y.; Seo, D.G. Effects of printing parameters on the fit of implant-supported 3d printing resin prosthetics. Materials 2019, 12, 2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, C.; Dibes, J.; Rodriguez, L.E.L.; Papia, E. Accuracy of 3D printed polymers intended for models and surgical guides printed with two different 3D printers. Dent. Mater. J. 2021, 40, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Yao, S.; Zhao, J.; Zhou, C.; Oates, T.W.; Weir, M.D.; Wu, J.; Xu, H.H.K. Review on development and dental applications of polyetheretherketone-based biomaterials and restorations. Materials 2021, 14, 408. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, S.; Senthilvelan, T. Polymer composites in dentistry and orthopedic applications-a review. Mater. Today Proc. 2021, 46, 9707–9713. [Google Scholar] [CrossRef]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef]
- De Araújo Nobre, M.; Moura Guedes, C.; Almeida, R.; Silva, A. Poly-ether-ether-ketone and implant dentistry: The future of mimicking natural dentition is now! Polym. Int. 2021, 70, 999–1001. [Google Scholar] [CrossRef]
- Steling Rego, M.E.; Nunes Guimarães Paes, P.; Ribeiro da Silva Schanuel, F.; Mendes Jardim, P. Acid etching and silica coating effects on Y-TZP topography and ceramic/resin cement bond strength. Ceram. Int. 2021, 47, 5235–5243. [Google Scholar] [CrossRef]
- Hatanaka, G.R.; Polli, G.S.; Adabo, G.L. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J. Prosthet. Dent. 2020, 123, 330–337. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Cooper, L.F.; Walter, R. Fracture rate of monolithic zirconia restorations up to 5 years: A dental laboratory survey. J. Prosthet. Dent. 2016, 116, 436–439. [Google Scholar] [CrossRef]
- Ayash, G.M.; Ossman, E.; Segaan, L.G.; Rayyan, M.; Joukhadar, C. Influence of core color on final shade reproduction of zirconia crown in single central incisor situation—An in vivo study. J. Clin. Exp. Dent. 2020, 12, e46–e51. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.-M.; Peng, T.-Y.; Huang, H.-H. Effects of thickness of different types of high-translucency monolithic multilayer precolored zirconia on color accuracy: An in vitro study. J. Prosthet. Dent. 2021, 126, 587.e581–587.e588. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.-M.; Peng, T.-Y.; Shimoe, S. Color accuracy of different types of monolithic multilayer precolored zirconia ceramics. J. Prosthet. Dent. 2020, 124, 789.e1–789.e7. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-S.; Kang, K.-H.; Att, W. Effect of aging process on some properties of conventional and multilayered translucent zirconia for monolithic restorations. Ceram. Int. 2020, 46, 1854–1868. [Google Scholar] [CrossRef]
- Alessandretti, R.; Borba, M.; Della Bona, A. Cyclic contact fatigue resistance of ceramics for monolithic and multilayer dental restorations. Dent. Mater. 2020, 36, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Kim, S.-H. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent. Mater. J. 2014, 30, e229–e237. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Ritter, A.V.; Vallittu, P.K.; Närhi, T.O.; Lassila, L.V. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent. Mater. 2015, 31, 1180–1187. [Google Scholar] [CrossRef]
- Tabatabaian, F.; Motamedi, E.; Sahabi, M.; Torabzadeh, H.; Namdari, M. Effect of thickness of monolithic zirconia ceramic on final color. J. Prosthet. Dent. 2018, 120, 257–262. [Google Scholar] [CrossRef]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Spink, L.S.; Rungruanganut, P.; Megremis, S.; Kelly, J.R. Comparison of an absolute and surrogate measure of relative translucency in dental ceramics. Dent. Mater. 2013, 29, 702–707. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color. Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Thomsen, K. A Euclidean color space in high agreement with the CIE94 color difference formula. Color. Res. Appl. 2000, 25, 64–65. [Google Scholar] [CrossRef]
- Johnston, W.M.; Kao, E.C. Assessment of appearance match by visual observation and clinical colorimetry. J. Dent. Res. 1989, 68, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Strasding, M.; Valente, N.A.; Zwahlen, M.; Liu, S.; Pjetursson, B.E. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin. Oral Implant. Res. 2018, 29, 184–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2017, 97, 140–147. [Google Scholar] [CrossRef]
- Tabatabaian, F. Color aspect of monolithic zirconia restorations: A review of the literature. J. Prosthodont. 2018, 28, 276–287. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, S.-H.; Lee, J.-B.; Han, J.-S.; Yeo, I.-S.; Ha, S.-R. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J. Adv. Prosthodont. 2016, 8, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Erdelt, K.; Pinheiro Dias Engler, M.L.; Beuer, F.; Güth, J.-F.; Liebermann, A.; Schweiger, J. Computable translucency as a function of thickness in a multi-layered zirconia. J. Prosthet. Dent. 2019, 121, 683–689. [Google Scholar] [CrossRef]
- Alp, G.; Subaşı, M.G.; Seghi, R.R.; Johnston, W.M.; Yilmaz, B. Effect of shading technique and thickness on color stability and translucency of new generation translucent zirconia. J. Dent. 2018, 73, 19–23. [Google Scholar] [CrossRef]
- Li, Q.; Yu, H.; Wang, Y.N. Spectrophotometric evaluation of the optical influence of core build-up composites on all-ceramic materials. Dent. Mater. 2009, 25, 158–165. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Deng, L.; Jin, J.; Gong, P.; Wang, X. Mechanical behavior of tetragonal zirconia nanopillars subjected to uniaxial loading: A molecular dynamics study. Mech. Mater. 2020, 151, 103666. [Google Scholar] [CrossRef]
- Kurtulmus-Yilmaz, S.; Ulusoy, M. Comparison of the translucency of shaded zirconia all-ceramic systems. J. Adv. Prosthodont. 2014, 6, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, T.-Y.; Lin, D.-J.; Mine, Y.; Tasi, C.-Y.; Li, P.-J.; Shih, Y.-H.; Chiu, K.-C.; Wang, T.-H.; Hsia, S.-M.; Shieh, T.-M. Biofilm formation on the surface of (poly)ether-ether-ketone and in vitro antimicrobial efficacy of photodynamic therapy on peri-implant mucositis. Polymers 2021, 13, 940. [Google Scholar] [CrossRef] [PubMed]
Materials | Main Composition | Manufacturer | Manufacturing Process | Code |
---|---|---|---|---|
Substrate materials | ||||
Dental 3D printing resin | ||||
NextDent C&B MFH | methacrylic oligomers, phosphine oxide, microfiller | NextDent B.V, Soesterberg, The Netherlands | 3D printing | CR |
DENTAL MODEL | aromatic methacrylic oligomer, aliphatic methacrylic oligomer, phosphine oxide | Enlighten Materials Co., Ltd., Taipei, Taiwan | 3D printing | MR |
Semicrystalline thermoplastic polymers | ||||
VESTAKEEP | poly(ether-ether-ketone) | Evonik Japan Co., Tokyo, Japan | milling | PEEK |
Pekkton ivory | poly(ether-ketone-ketone) | Cendres+Métaux SA, Biel/Bienne, Switzerland | milling | PEKK |
Zirconia polycrystal | ||||
Super High Translucent Plus White Zirconia | zirconium dioxide, yttrium oxide | Aidite Technology Co., Ltd., Qin Huang Dao, China | milling | Y-TZP |
Metal alloy | ||||
C02 (CoCrMo Powders) | cobalt, chromium, molybdenum | Material Technology Innovations Co., Ltd., Guangzhou, China | 3D printing | Co–Cr |
Testing materials | ||||
3D Pro Multilayer (4Y-PSZ + 5Y-PSZ)* | zirconium dioxide, yttrium oxide | Aidite Technology Co., Ltd., Qin Huang Dao, China | milling | M-Zr |
Substrate Material | L* | a* | b* |
---|---|---|---|
CR | 71.40 ± 0.10 | −2.23 ± 0.12 | 14.43 ± 0.12 |
MR | 48.57 ± 0.12 | 12.73 ± 0.06 | 36.57 ± 0.15 |
PEEK | 90.90 ± 0.01 | 0.73 ± 0.06 | 5.97 ± 0.15 |
PEKK | 79.33 ± 0.06 | 3.53 ± 0.12 | 11.83 ± 0.06 |
Y-TZP | 79.40 ± 0.17 | −1.83 ± 0.06 | −0.13 ± 0.06 |
Co-Cr | 31.97 ± 0.12 | 1.71 ± 0.12 | 2.97 ± 0.06 |
Substrate | L* | a* | b* |
---|---|---|---|
Black | 67.91 ± 0.31 | −0.86 ± 0.04 | 5.99 ± 0.12 |
White | 81.62 ± 0.24 | 0.77 ± 0.26 | 11.46 ± 0.17 |
Gray | 69.09 ± 0.30 | −0.79 ± 0.06 | 6.30 ± 0.20 |
CR | 75.30 ± 0.33 | −0.47 ± 0.09 | 11.23 ± 0.14 |
MR | 72.65 ± 0.51 | 2.53 ± 0.10 | 11.77 ± 0.26 |
PEEK | 79.99 ± 0.28 | 1.35 ± 0.10 | 12.15 ± 0.30 |
PEKK | 76.16 ± 0.26 | 1.73 ± 0.55 | 11.16 ± 0.26 |
Y-TZP | 78.20 ± 0.23 | 0.05 ± 0.21 | 9.30 ± 0.21 |
Co-Cr | 72.28 ± 0.20 | −0.37 ± 0.07 | 7.52 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-C.; Peng, T.-Y.; Kang, C.-M.; Chao, F.-Y.; Yu, J.-H.; Chen, S.-F. Evaluating the Effect of Different Polymer and Composite Abutments on the Color Accuracy of Multilayer Pre-Colored Zirconia Polycrystal Dental Prosthesis. Polymers 2022, 14, 2325. https://doi.org/10.3390/polym14122325
Hsu W-C, Peng T-Y, Kang C-M, Chao F-Y, Yu J-H, Chen S-F. Evaluating the Effect of Different Polymer and Composite Abutments on the Color Accuracy of Multilayer Pre-Colored Zirconia Polycrystal Dental Prosthesis. Polymers. 2022; 14(12):2325. https://doi.org/10.3390/polym14122325
Chicago/Turabian StyleHsu, Wen-Chieh, Tzu-Yu Peng, Chien-Ming Kang, Fan-Yi Chao, Jian-Hong Yu, and Su-Feng Chen. 2022. "Evaluating the Effect of Different Polymer and Composite Abutments on the Color Accuracy of Multilayer Pre-Colored Zirconia Polycrystal Dental Prosthesis" Polymers 14, no. 12: 2325. https://doi.org/10.3390/polym14122325
APA StyleHsu, W.-C., Peng, T.-Y., Kang, C.-M., Chao, F.-Y., Yu, J.-H., & Chen, S.-F. (2022). Evaluating the Effect of Different Polymer and Composite Abutments on the Color Accuracy of Multilayer Pre-Colored Zirconia Polycrystal Dental Prosthesis. Polymers, 14(12), 2325. https://doi.org/10.3390/polym14122325