Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Formulation of Microparticles
2.3. Extraction of Microparticles
2.4. Evaluation of the Total Phenolics
2.5. Evaluation of Total Proanthocyanidins
2.6. Evaluation of Antioxidant Activity
2.7. Identification and Quantification of Phenolic Compounds
2.8. Color Measurement and Color Change
2.9. Evaluation of Volatiles
2.10. Fourier Transform Infrared with Attenuated Total Reflection (FTIR-ATR) Spectroscopy Analysis
2.11. Statistical Analysis
3. Results
3.1. Phenolic Compounds, Antioxidant Activities, and Color of Formulated Microparticles
3.2. Flavor Profile of Formulated Microparticles
3.3. IR Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Sobczak, P.; Nadulski, R.; Kobus, Z.; Zawiślak, K. Technology for apple pomace utilization within a sustainable development policy framework. Sustainability 2022, 14, 5470. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary fiber from underutilized plant resources—A positive approach for valorization of fruit and vegetable wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Sendra, E.; Kuri, V.; Fernandez-Lopez, J.; Sayas-Barbera, E.; Navarro, C.; Perez-Alvarez, J.A. Viscoelastic properties of orange fiber enriched yogurt as a function of fiber dose, size and thermal treatment. LWT Food Sci. Technol. 2010, 43, 708–714. [Google Scholar] [CrossRef]
- Bonarius, G.A.; Vieira, J.B.; van der Goot, A.J.; Bodnar, I. Rheological behaviour of fibre-rich plant materials in fat-based food systems. Food Hydrocoll 2014, 40, 254–261. [Google Scholar] [CrossRef]
- Fu, J.-T.; Chang, Y.-H.; Shiau, S.-Y. Rheological, antioxidative and sensory properties of dough and Mantou (steamed bread) enriched with lemon fiber. LWT Food Sci. Technol. 2015, 61, 56–62. [Google Scholar] [CrossRef]
- Su, D.; Zhu, X.; Wang, Y.; Lia, D.; Wang, L. Effect of high-pressure homogenization on rheological properties of citrus fiber. LWT Food Sci. Technol. 2020, 127, 109366. [Google Scholar] [CrossRef]
- Da Silva, L.C.; Viganó, J.; de Souza Mesquita, L.M.; Baião Dias, A.L.; de Souza, M.C.; Sanches, V.L.; Chaves, J.O.; Pizani, R.S.; Contieri, L.S.; Rostagno, M.A. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chem. X 2021, 12, 100133. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Fernández-Prior, Á.; Vioque, B.; Fernández-Bolaños, J. Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chem. 2018, 280, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Lama-Muñoz, A.; Fernández-Bolañoz, J. Complexation of hydroxytyrosol and 3,4,-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydr. Polym. 2017, 163, 292–300. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rodríguez-Juan, E.; González-Benjumea, A.; Fernández-Bolaños, J. Molecular interactions between 3,4-dihyroxyphenylglycol and pectin and antioxidant capacity of this complex in vitro. Carbohydr. Polym. 2018, 197, 260–268. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M. Binding of polyphenols to plant cell wall analogues—Part 2: Phenolic acids. Food Chem. 2012, 135, 2292–2297. [Google Scholar] [CrossRef]
- Renard, C.M.; Baron, A.; Guyot, S.; Drilleau, J.-F. Interactions between apple cell walls and native apple polyphenols: Quantification and some consequences. Int. J. Biol. Macromol. 2001, 29, 115–125. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Melton, L.D.; O’Connor, C.J.; Kilmartin, P.A.; Smith, B.G. Effect of apple cell walls and their extracts on the activity of dietary antioxidants. J. Agric. Food Chem. 2007, 56, 289–295. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Smith, B.G.; O’Connor, C.J.; Melton, D.L. Effect of raw and cooked onion dietary fiber on the antioxidant activity of ascorbic acid and quercetin. Food Chem. 2008, 11, 580–585. [Google Scholar] [CrossRef]
- Vukoja, J.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Cellulose as a delivery system of raspberry juice volatiles and their stability. Molecules 2020, 25, 2624. [Google Scholar] [CrossRef]
- Vukoja, J.; Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Formulation and stability of cellulose-based delivery systems of raspberry phenolics. Processes 2021, 9, 90. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V. Blackberry Juice. In Handbook of Functional Beverages and Human Health; Shahidi, F., Alaalvar, C., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016; pp. 135–145. [Google Scholar]
- Qian, M.C.; Wang, Y. Seasonal variation of volatile composition and odor activity value of ‘Marion’ (Rubus spp. hyb) and ‘Thornless Evergreen’ (R. laciniatus L.) blackberries. J. Food Sci. 2005, 70, C13–C20. [Google Scholar] [CrossRef]
- Du, X.; Finn, C.E.; Qian, M.C. Volatile composition and odour-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chem. 2010, 119, 117–1134. [Google Scholar] [CrossRef]
- Saifullah, M.; Islam Shishir, M.R.; Ferdowsi, R.; Tanver Rahman, M.R.; Van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Espinosa-Andrews, H.; Morales-Hernández, N.; García-Márquez, E.; Rodríguez-Rodríguez, R. Development of fish oil microcapsules by spray drying using mesquite gum and chitosan as wall materials: Physicochemical properties, microstructure, and lipid hydroperoxide concentration. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–10. [Google Scholar] [CrossRef]
- Papoutsis, K.; Golding, J.; Vuong, Q.; Pristijono, P.; Stathopoulos, C.; Scarlett, C.; Bowyer, M. Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan. Foods 2018, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Hui, X.; Stipkovits, L.; Rachman, A.; Tu, J.; Brennan, M.A.; Brennan, C.S. Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. Innov. Food Sci. Emerg. Technol. 2021, 68, 102606. [Google Scholar] [CrossRef]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K.; Gracin, L. Study of trehalose addition on aroma retention in dehydrated strawberry puree. Food Technol. Biotechnol. 2003, 41, 111–119. [Google Scholar]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K.; Kljusurić, J.G.; Banović, M. Trehalose improves flavour retention in dehydrated apricot puree. Int. J. Food Sci. Technol. 2005, 40, 425–435. [Google Scholar] [CrossRef]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K. Aroma of dehydrated pear products. LWT Food Sci. Technol. 2007, 40, 1578–1586. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V.; Hribar, J.; Simčič, M.; Zlatič, E.; Tiban, N.N. Influence of trehalose addition and storage conditions on the quality of strawberry cream filling. J. Food Eng. 2008, 87, 341–350. [Google Scholar] [CrossRef]
- Galmarini, M.V.; van Baren, C.; Zamora, M.C.; Chirife, J.; Di Leo Lira, P.; Bandoni, A. Impact of trehalose, sucrose and/or maltodextrin addition on aroma retention in freeze dried strawberry puree. Int. J. Food Sci. Technol. 2011, 46, 1337–1345. [Google Scholar] [CrossRef]
- Kopjar, M.; Jakšić, K.; Piližota, V. Influence of sugars and chlorogenic acid addition on anthocyanin content, antioxidant activity and color of blackberry juice during storage. J. Food Process. Preserv. 2012, 36, 545–552. [Google Scholar] [CrossRef]
- Kopjar, M.; Hribar, J.; Simčič, M.; Zlatić, E.; Tomaž, P.; Piližota, V. Effect of trehalose addition on volatiles responsible for strawberry aroma. Nat. Prod. Commun. 2013, 8, 1767–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopjar, M.; Pichler, A.; Turi, J.; Piližota, V. Influence of trehalose addition on antioxidant activity, colour and texture of orange jelly during storage. Int. J. Food Sci. Technol. 2016, 51, 2640–2646. [Google Scholar] [CrossRef]
- Lončarić, A.; Pichler, A.; Trtinjak, I.; Piližota, V.; Kopjar, M. Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides. LWT Food Sci. Technol. 2016, 73, 391–396. [Google Scholar] [CrossRef]
- Zlatić, E.; Pichler, A.; Kopjar, M. Disaccharides: Influence on volatiles and phenolics of sour cherry juice. Molecules 2017, 22, 1939. [Google Scholar] [CrossRef] [Green Version]
- Zlatić, E.; Pichler, A.; Lončarić, A.; Vidrih, R.; Požrl, T.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile compounds of freeze-dried sour cherry puree affected by addition of sugars. Int. J. Food Prop. 2017, 20, S449–S456. [Google Scholar] [CrossRef] [Green Version]
- Vukoja, J.; Buljeta, I.; Ivić, I.; Šimunović, J.; Pichler, A.; Kopjar, M. Disaccharide type affected phenolic and volatile compounds of citrus fiber-blackberry cream fillings. Foods 2021, 10, 243. [Google Scholar] [CrossRef]
- Van Can, J.G.P.; Van Loon, L.J.C.; Brouns, F.; Blaak, E.E. Reduced glycaemic and insulinaemic responses following treha-lose and isomaltulose ingestion: Implications for postprandial substrate use in impaired glucose-tolerant subjects. Br. J. Nutr. 2012, 108, 1210–1217. [Google Scholar] [CrossRef]
- Neta, T.; Takada, K.; Hirasawa, M. Low-cariogenicity of trehalose as a substrate. J. Dent. 2000, 28, 571–576. [Google Scholar] [CrossRef]
- Buljeta, I.; Nosić, M.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Apple fibers as carriers of blackberry juice polyphenols: Development of natural functional food additives. Molecules 2022, 27, 3029. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotonutric acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Apak, R.; Guculu, K.G.; Ozyurek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric iron reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Ivić, I.; Kopjar, M.; Jakobek, L.; Jukić, V.; Korbar, S.; Marić, B.; Mesić, J.; Pichler, A. Influence of processing parameters on phenolic compounds and color of cabernet sauvignon red wine concentrates obtained by reverse osmosis and nanofiltration. Processes 2021, 9, 89. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Liu, C.; Ge, S.; Yang, J.; Xu, Y.; Zhao, M.; Xiong, L.; Sun, Q. Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions. J. Funct. Foods 2016, 26, 632–644. [Google Scholar] [CrossRef]
- Da Rosa, C.G.; Borges, C.D.; Zambiazi, R.C.; Rutz, J.K.; da Luz, S.R.; Krumreich, F.D.; Benvenutti, E.V.; Nunes, M.R. Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). LWT Food Sci. Technol 2014, 58, 527–533. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding selectivity of dietary polyphenols to different plant cell wall components: Quantification and mechanism. Food Chem. 2017, 233, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.D.T.; Netzel, G.; Wang, D.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chem. 2015, 171, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Martinez-Sanz, M.; Lopez-Sanchez, P.; Gilbert, E.P.; Gidley, M.J. Adsorption behavior of polyphenols on cellulose is affected by processing history. Food Hydrocoll. 2017, 63, 496–507. [Google Scholar] [CrossRef]
- Cartalade, D.; Vernhet, A. Polar interactions in flavan-3-ol adsorption on solid surfaces. J. Agric. Food Chem. 2006, 54, 3086–3094. [Google Scholar] [CrossRef]
- Sakakura, K.; Okabe, A.; Oku, K.; Sakurai, M. Experimental and theoretiacal study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J. Phys. Chem. 2011, 115, 9823–9830. [Google Scholar] [CrossRef]
- Pichler, A.; Pozderović, A.; Moslavac, T.; Popović, K. Influence of sugars, modified starches and hydrocolloids addition on colour and thermal properties of raspberry cream fillings. Pol. J. Food Nutr. Sci. 2017, 67, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Van Ruth, S.M.; King, C. Effect of starch and amylopectin concentrations on volatile flavour release from aqueous model food systems. Flavour. Fragr. J. 2003, 18, 407–416. [Google Scholar] [CrossRef]
- Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. NMR and quantum chemical study on the OH...pi and CH...O interactions between trehalose and unsaturated fatty acids: Implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003, 125, 12739–12748. [Google Scholar] [CrossRef]
- Oku, K.; Kurose, M.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Okabe, A.; Sakurai, M. Combined NMR and quantum chemical studies on the interaction between trehalose and dienes relevant to the antioxidant function of trehalose. J. Phys. Chem. B 2005, 109, 3032–3040. [Google Scholar] [CrossRef]
- Engelsena, S.B.; Monteiro, C.; de Penhoat, C.H.; Pérez, S. The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophys. Chem. 2001, 93, 103–127. [Google Scholar] [CrossRef]
Samples | TP | PA | DPPH | ABTS | FRAP | CUPRAC |
---|---|---|---|---|---|---|
AF_B | 1.35 ± 0.01 a | 47.81 ± 0.12 a | 53.18 ± 0.02 a | 65.65 ± 0.32 a | 9.13 ± 0.66 a | 555.39 ± 4.24 a |
AF_S_0.5 | 1.29 ± 0.02 b | 26.42 ± 0.36 e | 48.05 ± 1.01 c | 55.98 ± 0.57 b | 7.55 ± 0.78 b | 494.75 ± 7.29 c |
AF_S_1 | 1.15 ± 0.02 d | 21.41 ± 0.18 f | 47.80 ± 0.35 c | 46.95 ± 0.98 d | 7.04 ± 0.53 c | 451.29 ± 7.21 d |
AF_S_2 | 0.95 ± 0.02 f | 12.98 ± 0.59 g | 42.16 ± 0.51 e | 41.74 ± 0.74 e | 5.98 ± 0.41 d | 378.74 ± 6.85 e |
AF_T_0.5 | 1.25 ± 0.01 b | 42.99 ± 0.60 b | 51.23 ± 0.01 b | 54.22 ± 0.92 b | 8.06 ± 0.58 a | 551.79 ± 7.77 a |
AF_T_1 | 1.15 ± 0.01 c | 40.67 ± 0.19 c | 47.93 ± 1.42 c,d | 51.51 ± 0.35 c | 7.65 ± 0.69 b | 506.46 ± 0.38 b |
AF_T_2 | 1.02 ± 0.02 d | 39.88 ± 0.07 d | 45.55 ± 0.72 d | 45.98 ± 0.25 d | 6.41 ± 0.43 c | 449.94 ± 1.42 d |
Blackberry Juice | Apple Fiber | ||
---|---|---|---|
Cyanidin 3-glucoside | 339.8 ± 0.40 | Phloretin | 17.64 ± 0.48 |
Cyanidin 3-dioxalylglucoside | 118.8 ± 0.03 | Phlorizin hydrate | 78.21 ± 0.60 |
Ellagic acid | 27.35 ± 0.00 | Chlorogenic acid | 51.64 ± 2.70 |
Caffeic acid | 3.8 ± 0.00 | HC-1 | 17.36 ± 0.13 |
Chlorogenic acid | 31.55 ± 0.03 | HC-2 | 15.72 ± 0.02 |
p-Coumaric acid | 41.1 ± 0.00 | Quercetin | 130.60 ± 5.38 |
Gallic acid | 36.3 ± 0.01 | Rutin | 9.54 ± 1.14 |
Quercetin | 22.7 ± 0.05 | ||
Rutin | 3.7 ± 0.00 |
AF_B | AF_S_0.5 | AF_S_1 | AF_S_2 | AF_T_0.5 | AF_T_1 | AF_T_2 | |
---|---|---|---|---|---|---|---|
C-3-G | 151.97 ± 0.11 a | 138.74 ± 0.42 c | 127.01 ± 2.88 d | 100.28 ± 0.28 g | 142.56 ± 1.06 b | 120.17 ± 1.28 e | 111.97 ± 4.39 f |
C-3-DG | 36.71 ± 0.46 a | 32.58 ± 0.31 b | 30.61 ± 0.32 c | 24.90 ± 0.38 f | 32.20 ± 0.07 b | 27.98 ± 0.36 d | 26.20 ± 0.54 e |
Q | 92.96 ± 1.14 a | 81.72 ± 0.36 c | 75.99 ± 1.02 d | 62.93 ± 0.12 f | 83.69 ± 0.00 b | 74.64 ± 1.19 d | 68.27 ± 1.44 e |
EA | 28.95 ± 0.01 a | 24.35 ± 0.09 c | 23.43 ± 0.47 d | 20.20 ± 0.09 e | 26.32 ± 0.26 b | 22.89 ± 0.71 d | 22.77 ± 0.65 d |
ChA | 23.63 ± 0.28 a | 21.58 ± 0.10 c | 21.67 ± 0.20 c | 19.25 ± 0.01 d | 22.32 ± 0.15 b | 20.89 ± 0.25 c | 19.66 ± 0.32 d |
HC-1 | 21.24 ± 0.04 a | 19.59 ± 0.00 c | 19.91 ± 0.12 c | 18.08 ± 0.02 e | 20.65 ± 0.07 b | 19.78 ± 0.07 c | 19.16 ± 0.22 d |
HC-2 | 17.82 ± 0.04 a | 16.61 ± 0.00 d | 17.16 ± 0.07 b,c | 15.83 ± 0.02 e | 17.40 ± 0.00 b | 16.93 ± 0.09 c | 16.48 ± 0.09 d |
P | 16.98 ± 0.03 e | 14.45 ± 0.01 c | 10.89 ± 0.27 b | 9.09 ± 0.01 a | 16.47 ± 0.09 e | 15.39 ± 0.38 d | 14.84 ± 0.61 c |
Ph | 22.47 ± 0.07 e | 20.33 ± 0.49 d | 15.45 ± 0.07 c | 13.39 ± 0.37 b | 15.83 ± 0.08 c | 13.45 ± 0.45 b | 11.21 ± 0.28 a |
Samples | L* | a* | b* | ΔE | °h | C* |
---|---|---|---|---|---|---|
AF_B | 48.13 ± 0.01 e | 19.06 ± 0.07 c | 11.23 ± 0.02 c,d | 29.81 ± 0.07 c | 22.59 ± 0.07 c,d | |
AF_S_0.5 | 48.73 ± 0.06 d | 20.08 ± 0.06 a | 11.53 ± 0.02 c | 0.83 | 29.88 ± 0.10 c | 23.15 ± 0.04 b |
AF_S_1 | 50.86 ± 0.03 c | 20.11 ± 0.05 a | 11.80 ± 0.03 b | 2.84 | 30.40 ± 0.10 b | 23.32 ± 0.03 b |
AF_S_2 | 52.75 ± 0.04 b | 20.37 ± 0.02 a | 12.54 ± 0.04 a | 4.87 | 31.62 ± 0.11 a | 23.93 ± 0.01 a |
AF_T_0.5 | 48.69 ± 0.03 d | 19.46 ± 0.02 b | 11.12 ± 0.03 d | 0.59 | 29.73 ± 0.04 c | 22.43 ± 0.03 d |
AF_T_1 | 50.30 ± 0.07 c | 19.63 ± 0.02 b | 11.49 ± 0.01 c | 2.19 | 30.36 ± 0.02 b | 22.74 ± 0.01 c |
AF_T_2 | 55.14 ± 0.04 a | 17.98 ± 0.02 d | 10.25 ± 0.05 e | 7.26 | 29.69 ± 0.11 c | 20.70 ± 0.03 e |
Volatiles | BJ | AF | C | RT | RI | OT | Descriptor |
---|---|---|---|---|---|---|---|
Hexanal | - | 52.64 ± 1.56 | + | 5.13 | 800 | 20 | green |
Heptanal | 0.72 ± 0.00 | 6.29 ± 0.10 | + | 10.76 | 897 | 3 | green |
D-limonene | 7.37 ± 0.13 | 64.90 ± 1.15 | + | 19.41 | 1018 | 10 | citrus |
Citronellal | 1.85 ± 0.02 | 24.40 ± 0.46 | + | 21.13 | 1051 | 25 | floral |
Linalool oxide | 62.27 ± 1.54 | - | - | 22.19 | 1068 | 100 | floral |
Guaiacol | 104.17 ± 1.80 | - | + | 23.17 | 1080 | 20 | green |
Linalool | 23.39 ± 0.42 | 80.92 ± 4.45 | + | 23.96 | 1096 | 6 | floral |
Phenethyl alcohol | 47.39 ± 0.48 | - | + | 24.6 | 1103 | 1000 | floral |
Menthol | 13.86 ± 0.28 | - | + | 27.75 | 1167 | 920 | minty |
Nerol | 20.25 ± 0.61 | - | + | 30.63 | 1222 | 290 | citrus |
Citral | 17.02 ± 0.36 | 4.92 ± 0.21 | + | 32.64 | 1265 | 30 | citrus |
Perillyl alcohol | 29.19 ± 1.98 | 3.71 ± 0.13 | + | 33.9284 | 1290 | 1660 | green |
Eugenol | 31.19 ± 0.01 | - | + | 36.5930 | 1355 | 30 | spicy |
β-damascenone | 11.90 ± 0.12 | 5.89 ± 0.24 | + | 37.6815 | 1381 | 10 | floral |
α-ionone | 13.10 ± 0.44 | 1.64 ± 0.09 | + | 38.95 | 1420 | 0.6 | floral |
γ-ionone | 4.18 ± 0.43 | 4.24 ± 0.19 | + | 40.18 | 1473 | 0.07 | floral |
β-ionone | 2.58 ± 0.11 | 5.46 ± 0.43 | + | 40.34 | 1480 | 0.1 | floral |
Volatiles | AF_B | S_0.5 | S_1 | S_2 | T_0.5 | T_1 | T_2 |
---|---|---|---|---|---|---|---|
Hexanal | 41.75 ± 0.23 f | 69.16 ± 3.28 e | 125.91 ± 0.19 d | 138.37 ± 0.65 b | 70.55 ± 0.71 e | 136.82 ± 0.44 c | 143.68 ± 0.47 a |
Heptanal | 0.81 ± 0.00 e | 5.80 ± 0.01 d | 6.87 ± 0.06 c | 7.74 ± 0.09 b | 7.74 ± 0.04 b | 7.57 ± 0.12 b | 9.04 ± 0.63 a |
D-limonene | 115.62 ± 2.11 b | 117.08 ± 0.45 b | 115.37 ± 0.75 b | 88.22 ± 0.47 e | 96.25 ± 1.24 d | 119.33 ± 1.33 b | 154.68 ± 0.95 a |
Citronellal | 54.67 ± 0.66 b | 54.61 ± 0.66 b | 44.95 ± 0.10 c | 40.47 ± 1.07 d | 67.03 ± 0.47 a | 35.74 ± 0.60 e | 35.19 ± 0.55 e |
Guaiacol | 14.99 ± 0.22 d | 16.51 ± 0.14 c | 14.45 ± 0.05 e | 12.53 ± 0.00 f | 21.73 ± 0.31 a | 18.14 ± 0.07 b | 16.94 ± 0.06 c |
Linalool | 66.58 ± 0.68 b | 66.94 ± 1.57 b | 51.80 ± 0.03 d | 49.86 ± 0.06 e | 71.76 ± 0.48 a | 62.66 ± 0.21 c | 51.26 ± 0.90 d |
Phenethyl alcohol | 22.19 ± 0.09 a | 19.98 ± 0.05 b | 11.73 ± 0.07 f | 9.71 ± 0.08 h | 17.99 ± 0.11 c | 13.92 ± 0.06 d | 12.94 ± 0.11 e |
Menthol | 7.48 ± 0.09 a | 6.78 ± 0.01 c | 6.26 ± 0.02 d | 4.62 ± 0.15 f | 7.22 ± 0.03 b | 6.22 ± 0.03 d | 5.85 ± 0.05 e |
Nerol | 10.21 ± 0.23 a | 10.01 ± 0.13 a | 6.38 ± 0.09 d | 3.40 ± 0.05 f | 8.79 ± 0.27 b | 6.75 ± 0.02 c | 6.12 ± 0.04 e |
Citral | 13.53 ± 0.07 c | 13.97 ± 0.13 b | 9.76 ± 0.10 e | 9.43 ± 0.10 e | 16.92 ± 0.46 a | 13.00 ± 0.17 d | 13.49 ±0.06 c |
Perillyl alcohol | 10.20 ± 0.25 b | 10.51 ± 0.00 b | 9.01 ± 0.05 c | 8.08 ± 0.11 d | 11.13 ± 0.15 a | 9.06 ± 0.03 c | 8.86 ± 0.16 c |
Eugenol | 3.19 ± 0.16 c | 3.56 ± 0.13 b | 2.15 ± 0.02 e | 2.75 ± 0.01 d | 4.19 ± 0.30 a | 2.85 ± 0.03 d | 3.17 ± 0.19 c |
β-damascenone | 8.29 ± 0.07 a | 6.68 ± 0.11 c | 5.69 ± 0.36 e | 4.70 ± 0.24 f | 7.58 ± 0.05 b | 6.02 ± 0.08 d | 5.62 ± 0.05 e |
α-ionone | 2.61 ± 0.01 b | 2.81 ± 0.00 a | 2.65 ± 0.05 b | 1.73 ± 0.03 d | 2.83 ± 0.01 a | 2.63 ± 0.01 b | 2.27 ± 0.01 c |
γ-ionone | 9.62 ± 0.14 b | 7.99 ± 0.19 c | 6.26 ± 0.08 d | 4.58 ± 0.21 e | 10.30 ± 0.06 a | 8.18 ± 0.02 c | 6.55 ± 0.04 d |
β-ionone | 10.68 ± 0.13 a | 5.55 ± 0.04 d | 5.12 ± 0.04 e | 5.09 ± 0.10 e | 7.33 ± 0.12 b | 7.02 ± 0.03 c | 7.34 ± 0.04 b |
Volatiles | BJ | AF | Samples | ||||||
---|---|---|---|---|---|---|---|---|---|
AF_B | S_0.5 | S_1 | S_2 | T_0.5 | T_1 | T_2 | |||
Hexanal | 0.00 | 2.63 | 2.09 | 3.46 | 6.30 | 6.92 | 3.53 | 6.84 | 7.18 |
Heptanal | 0.24 | 2.10 | 0.27 | 1.93 | 2.29 | 2.58 | 2.58 | 2.52 | 3.01 |
D-limonene | 0.74 | 6.49 | 11.56 | 11.71 | 11.54 | 8.82 | 9.63 | 11.93 | 15.47 |
Citronellal | 0.07 | 0.98 | 2.19 | 2.18 | 1.80 | 1.62 | 2.68 | 1.43 | 1.41 |
Linalool oxide | 0.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Guaiacol | 5.21 | 0.00 | 0.75 | 0.83 | 0.72 | 0.63 | 1.09 | 0.91 | 0.85 |
Linalool | 3.90 | 13.49 | 11.10 | 11.16 | 8.63 | 8.31 | 11.96 | 10.44 | 8.54 |
Phenethyl alcohol | 0.05 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
Menthol | 0.02 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Nerol | 0.07 | 0.00 | 0.04 | 0.03 | 0.02 | 0.01 | 0.03 | 0.02 | 0.02 |
Citral | 0.57 | 0.16 | 0.45 | 0.47 | 0.33 | 0.31 | 0.56 | 0.43 | 0.45 |
Perillyl alcohol | 0.02 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 |
Eugenol | 1.04 | 0.00 | 0.11 | 0.12 | 0.07 | 0.09 | 0.14 | 0.10 | 0.11 |
β-damascenone | 1.19 | 0.59 | 0.83 | 0.67 | 0.57 | 0.47 | 0.76 | 0.60 | 0.56 |
α-ionone | 21.83 | 2.73 | 4.35 | 4.68 | 4.42 | 2.88 | 4.72 | 4.38 | 3.78 |
γ-ionone | 29.71 | 30.57 | 137.43 | 114.14 | 89.43 | 65.43 | 147.14 | 116.86 | 93.57 |
β-ionone | 25.80 | 54.60 | 106.80 | 55.50 | 51.20 | 50.90 | 73.30 | 70.20 | 73.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopjar, M.; Buljeta, I.; Nosić, M.; Ivić, I.; Šimunović, J.; Pichler, A. Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers 2022, 14, 2179. https://doi.org/10.3390/polym14112179
Kopjar M, Buljeta I, Nosić M, Ivić I, Šimunović J, Pichler A. Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers. 2022; 14(11):2179. https://doi.org/10.3390/polym14112179
Chicago/Turabian StyleKopjar, Mirela, Ivana Buljeta, Mario Nosić, Ivana Ivić, Josip Šimunović, and Anita Pichler. 2022. "Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides" Polymers 14, no. 11: 2179. https://doi.org/10.3390/polym14112179