Evaluation of Polyethylene Terephthalate Powder in High Speed Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. The PET Powder
2.2. Sieving and Drying Procedure for the PET Powder
2.3. HSS Machine
2.4. Temperature Recordings with Infrared Camera
2.5. Process Conditions
2.6. Layout and Analysis of the PET Parts Manufactured by HSS
3. Results and Discussion
3.1. PET Powder, Particle Size and Particle Morphology
3.2. Crystallinity of the PET Powder, the Sintering Window and the Melting Range
3.3. Manufacturing Process and Manufactured Parts
3.4. Crystallinity of the Manufactured Parts by DSC
3.5. Density and Porosity
3.6. Mechanical Properties
3.7. Surface Morphology, Fracture Surface and Unmelts
3.8. Assessment of LS and HSS Machines, and What Is Needed for HSS of PET
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopkinson, N.; Hague, R.J.M.; Dickens, P.M. Rapid Manufacturing: An Industrial Revolution for the Digital Age; John Wiley & Sons: Chichester, UK, 2006; ISBN 13 978-0-470-01613-8. [Google Scholar]
- Hopkinson, N.; Smith, P.J. Industrial 3D Inkjet Printing/Additive Manufacturing, Handbook of Industrial Inkjet Printing: A Full System Approach, 1st ed.; Zapka, W., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar]
- Beaman, J.J.; Deckard, C.R. Selective Laser Sintering with Assisted Powder Handling. U.S. Patent 4,938,816A, 17 October 1986. [Google Scholar]
- Bashir, Z.; Gu, H. Polymer Composition for Selective. Sintering. Patent EP 3,472,222 B1, 20 June 2016. [Google Scholar]
- Bashir, Z.; Gu, H.; Yang, L. Evaluation of poly (ethylene terephthalate) powder as a material for selective laser sintering and characterisation of printed. Polym. Eng. Sci. 2018, 58, 1888–1900. [Google Scholar] [CrossRef]
- Gu, H.; Bashir, Z.; Yang, L. The re-usability of heat-exposed poly (ethylene terephthalate) powder for laser sintering. Addit. Manuf. 2019, 28, 194–204. [Google Scholar] [CrossRef]
- Gu, H.; AlFayez, F.; Ahmed, T.; Bashir, Z. Poly(ethylene terephthalate) Powder—A Versatile Material for Additive Manufacturing. Polymers 2019, 11, 2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkinson, N.; Erasenthiran, P. Method and Apparatus for Combining Particulate Material. U.S. Patent 7,879,282 B2, 1 February 2011. [Google Scholar]
- Schmid, M. Laser Sintering with Plastics: Technology, Processes and Materials, 1st ed.; Hanser Publishers: Cincinnati, OH, USA; Munich, Germany, 2018; ISBN 9781569906842. [Google Scholar]
- Ellis, A.; Hadjiforados, A.; Hopkinson, N. Speed and Accuracy of High. Speed Sintering. In Proceedings of the NIP31 International Conference on Digital Printing Technologies and Digital Fabrication, Portland, OR, USA, 27 September–1 October 2015; The Society for Imaging Science & Technology: Springfield, VA, USA. Available online: www.imaging.org (accessed on 15 April 2022).
- Hopkinson, N.; Dickens, P.M. Analysis of rapid manufacturing—Using layer manufacturing processes for production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003, 217, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.; Noble, C.J.; Hopkinson, N. High Speed Sintering: Assessing the influence of print density on microstructure and mechanical properties of nylon parts. Addit. Manuf. 2014, 1–4, 48–51. [Google Scholar] [CrossRef]
- Ellis, A.; Brown, R.; Hopkinson, N. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts. Surf. Topogr. Metrol. Prop. 2015, 3, 034005. [Google Scholar] [CrossRef] [Green Version]
- Majewski, C.E.; Hobbs, B.S.; Hopkinson, N. Effect of bed temperature and infra-red lamp power on the mechanical properties of parts produced using high-speed sintering. Virtual Phys. Prototyp. 2007, 2, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J.; Smith, P.J.; Majewski, C. Is ink heating a relevant concern in the High Speed Sintering process? Int. J. Adv. Manuf. Technol. 2020, 113, 1073–1080. [Google Scholar] [CrossRef]
- Norazman, F.; Smith, P.; Hopkinson, N. Spectral Analysis of Infrared Lamps for Use in the High Speed Sintering Process, Solid Freeform Fabrication. In Proceedings of the 26th Annual International, Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 8–10 August 2016; The University of Texas in Austin: Austin, TX, USA. [Google Scholar]
- Fahad, M.; Hopkinson, N. Evaluation of parts produced by a novel Additive Manufacturing process. Appl. Mech. Mater. 2013, 315, 63–67. [Google Scholar] [CrossRef]
- Fahad, M.; Hopkinson, N. Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes. Int. J. Adv. Manuf. Technol. 2017, 88, 3389–3394. [Google Scholar] [CrossRef]
- Majewski, C.E.; Oduye, D.; Thomas, H.R.; Hopkinson, N. Effect of infra-red power level on the sintering behaviour in the high speed sintering process. Rapid Prototyp. J. 2008, 14, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.; Noble, C.J.; Hartley, L.; Lestrange, C.; Hopkinson, N.; Majewski, C. Materials for high speed sintering. J. Mater. Res. 2014, 29, 2080–2085. [Google Scholar] [CrossRef]
- Brown, R.; Morgan, C.T.; Majewski, C.E. Not just nylon improving the range of materials for high speed sintering, Solid Freeform Fabrication. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 13–15 August 2018; The University of Texas at Austin: Austin, TX, USA. [Google Scholar]
- Ellis, A.; Hartley, L.; Hopkinson, N. Effect of Print Density on the Properties of High Speed Sintered Elastomers. Metall. Mater. Trans. A 2015, 46, 3883–3886. [Google Scholar] [CrossRef]
- Norazman, F.; Smith, P.; Ellis, A.; Hopkinson, N. Smoother and stronger high speed sintered elastomers through surface modification process. Int. J. Rapid Manuf. 2017, 6, 155–169. [Google Scholar] [CrossRef]
- Bharaj, K.; Paul, S.; Mumtaz, K.A.; Chisholm, M.; Hopkinson, N. Fabricating poly(methyl methacrylate) parts using high-speed sintering. Proc. Mech. Eng. Part. B J. Eng. Manuf. 2019, 234, 118–125. [Google Scholar] [CrossRef]
- Williams, R.J.; Fox, L.; Majewski, C. The effect of powder age in high speed sintering of poly(propylene). Rapid Prototyp. J. 2021, 27, 707–719. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Tuck, C.J.; Hague, R.J.M. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 2012, 57, 229. [Google Scholar] [CrossRef]
- Bashir, Z.; Al-Aloush, I.; Al-Raqibah, I.; Ibrahim, M. Evaluation of Three Methods for the Measurement of Crystallinity of PET Resins, Preforms and Bottles. Polym. Eng. Sci. 2000, 40, 2442. [Google Scholar] [CrossRef]
- Groeninckx, G.; Reynaers, H.; Berghmanns, H.; Smets, G.J. Morphology and melting behavior of semicrystalline poly(ethylene terephthalate). II. Annealed PET. J. Polym. Sci. Polym Phys. Edn. 1980, 8, 1311. [Google Scholar] [CrossRef]
- Anis, A.; Elnour, A.Y.; Alam, M.A.; Al-Zahrani, S.M.; AlFayez, F.; Bashir, Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers 2020, 12, 2038. [Google Scholar] [CrossRef]
- Gu, H.; AlFayez, F.; Yang, L.; Ahmed, T.; Bashir, Z. Powder bed fusion of aluminium—Poly(ethylene terephthalate) hybrid powder: Process behaviour and characterization of printed parts. Addit. Manuf. 2022, 51, 102616. [Google Scholar]
- Yan, C.; Shi, Y.; Yang, J.; Xu, L. Preparation and selective laser sintering of nylon-12- coated aluminium powders. J. Compos. Mater. 2009, 43, 1835–1851. [Google Scholar]
- Ahmad, T.; Bashir, Z. A novel method to make highly crystalline PET articles by powder compaction. In Proceedings of the ANTEC Conference, Orlando, FL, USA, 23–25 March 2015; pp. 2615–2622. [Google Scholar]
- Wellen, R.M.R.; Canedo, E.; Marcelo, S.; Rabello, M.S. Nonisothermal cold crystallization of poly(ethylene terephthalate). J. Mater. Res. 2011, 26, 1107–1115. [Google Scholar] [CrossRef]
- Guo, B.; Xu, Z.; Luo, X.; Bai, J. A detailed evaluation of surface, thermal and flammable properties of polyamide 12/glass beads composites fabricated by Multi Jet Fusion. Virtual Phys. Prototyp. 2021, 16 (Suppl. 1), S39–S52. [Google Scholar] [CrossRef]
- O’Connor, H.J.; Dowling, D.P. Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using Multi Jet Fusion. Addit. Manuf. 2020, 31, 100961. [Google Scholar] [CrossRef]
- Zarringhalam, H.; Hopkinson, N.; Kamperman, N.F.; de Vlieger, J.J. Effects of processing on microstructure and properties of SLS Nylon 12. Mater. Sci. Eng. A 2006, 435–436, 172–180. [Google Scholar]
- Majewski, C.; Zarringhalam, H.; Hopkinson, N. Effect of the degree of particle melting on the mechanical properties in selective laser-sintered Nylon-12 parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2008, 222, 1055–1064. [Google Scholar] [CrossRef]
- Ibett, J.; Tafazzolimoghaddam, B.; Hernandez Delgadillo, H.; Curiel-Sosa, J.L. What triggers a microcrack in printed engineering parts produced by selective laser sintering on the first place? Mater. Des. 2015, 88, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Loub, S.; Majewski, C. Characterisation and correlation of areal surface texture with processing parameters and porosity of High Speed Sintered parts. Addit. Manuf. 2020, 36, 101402. [Google Scholar] [CrossRef]
- Rouholamin, D.; Hopkinson, N. Understanding the efficacy of micro-CT to analyse high speed sintering parts. Rapid Prototyp. J. 2016, 22, 152–161. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Material | SABIC’s experimental PET powder |
Powder ratio | 100% virgin |
Process temperature | 190 °C |
Temperature hysteresis | 5 °C |
Build box wall temperature | 150 °C |
Build box floor plate temperature | 185 °C |
Re-coater temperature | 145 °C |
Sintering lamp power | 100% |
Pre-sintering lamp power | 70% |
Overhead lamp power | 33% |
Re-coater speed | 0.06 m/s |
Sintering lamp traverse speed | 0.09 m/s |
Ink print head speed | 0.39 m/s |
Layer thickness | 0.1 mm |
Re-coater gap | 4.0 mm |
Vibration strength | 87% |
Greyscale | 3 = 18 pL/voxel |
Pre-layers | 30 |
Post-layers | 50 |
LS | HSS | ||||
---|---|---|---|---|---|
Property | PET T1 [7] | PET T2 [7] | PA 12 [7] | PET | PA 12 |
Young’s modulus [GPa] | 2.96 | 3.26 | 1.60 | 3.01 ± 0.09 | 1.80 ± 0.02 |
Tensile strength [MPa] | 66 | 64 | 43 | 35.5 ± 3.4 | 48.6 ± 0.3 |
Elongation-at-break [%] | 4.9 | 2.7 | 13.1 | 1.2 ± 0.2 | 15.0 ± 1.7 |
Hardness | PET | PA12 |
---|---|---|
Top side [SHORE D] | 79.4 ± 0.9 | 70.8 ± 0.4 |
Bottom side [SHORE D] | 82.0 ± 0.1 | 72.0 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezold, D.; Wimmer, M.; Alfayez, F.; Bashir, Z.; Döpper, F. Evaluation of Polyethylene Terephthalate Powder in High Speed Sintering. Polymers 2022, 14, 2095. https://doi.org/10.3390/polym14102095
Pezold D, Wimmer M, Alfayez F, Bashir Z, Döpper F. Evaluation of Polyethylene Terephthalate Powder in High Speed Sintering. Polymers. 2022; 14(10):2095. https://doi.org/10.3390/polym14102095
Chicago/Turabian StylePezold, Daniel, Marco Wimmer, Fayez Alfayez, Zahir Bashir, and Frank Döpper. 2022. "Evaluation of Polyethylene Terephthalate Powder in High Speed Sintering" Polymers 14, no. 10: 2095. https://doi.org/10.3390/polym14102095
APA StylePezold, D., Wimmer, M., Alfayez, F., Bashir, Z., & Döpper, F. (2022). Evaluation of Polyethylene Terephthalate Powder in High Speed Sintering. Polymers, 14(10), 2095. https://doi.org/10.3390/polym14102095