Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis of 3β-Methoxy-5α-cholestano-2′-methyl-2-oxazoline (V), 3β-Chloro-5α-cholestano-2′-methyl-2-oxazoline (VI), 3β-Methoxy-N-amido-5α-cholestano-aziridine (VII), and 3β-Chloro-N-amido-5α-cholestano-aziridine (VIII)
2.2.1. Synthesis of 3β-Chlorocholest-5-ene (I)
2.2.2. Synthesis of 3β-Acetoxycholest-5-ene (II)
2.2.3. Synthesis of 3β-Acetoxy 5,6α-epoxy-5α-cholestane (III)
2.2.4. Synthesis of 3β-Chloro-5,6α-epoxy-5α-cholestane (IV)
2.2.5. Synthesis of 3β-Chloro-5α-cholestano-2′-methyl-2-oxazoline (V)
2.2.6. Synthesis of 3β-Acetoxy-5α-cholestano-2′-methyl-2-oxazoline (VI)
2.2.7. Synthesis of 3β-Chloro-N-amido-5α-cholestano-aziridine (VII)
2.2.8. Preparation of 3β-Acetoxy–N-amido-5α-cholestano-aziridine (VIII)
2.3. Fabrication of Steroidal Compounds Loaded-Chitosan/Polyvinyl Pyrrolidone (ST-CH/PVP) Nanofibers
2.4. Characterization
2.4.1. Characterization of the Synthesized Steroidal Oxazoline and Aziridine
2.4.2. Characterization of Electrospun Nanofibers
2.5. Degree of Swelling
2.6. Release Study
2.7. Antibacterial Activity
3. Results and Discussion
3.1. Characterization of Synthesized Steroidal Oxazoline and Aziridine Derivatives
3.1.1. Characterization of 3β-Chloro-5α-cholestano-2′-methyl-2-oxazoline (V)
3.1.2. Characterization of 3 β-Acetoxy-5α-cholestano-2′-methyl-2-oxazoline (VI)
3.1.3. Characterization of 3β-Chloro-N-amido-5α-cholestano-aziridine (VII)
3.1.4. Characterization of 3β-Acetoxy-N-amido-5α-cholestano aziridine (VIII)
3.2. SEM Characterization of Electrospun Nanofibers
3.3. Swelling Behavior
3.4. Release Study
3.5. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kusuma, H.; Agasi, H.; Darmokoesoemo, H. Effectiveness Inhibition of Fermentation Legen using Chitosan Nanoparticles. J. Mol. Genet. Med. 2015, 9, 173. [Google Scholar]
- Elango, J.; Robinson, J.; Arumugam, V.; Geevaretnama, J.; Durairaj, S. Mechanical and Barrier Properties of Multi-Composite Shark Catfish (Pangasius fungaseous) Skin Gelatin Films with the Addition of Sorbitol, Clay and Chitosan Using Response Surface Methodology. World J. Pharm. Pharm. Sci. WJPPS 2015, 4, 1099–1116. [Google Scholar]
- Duan, J.; Liua, Y.; Liua, L.; Jianga, J.; Lia, J. Double-Network Carboxymethyl Chitosan Grafting Polyacrylamide/Alginate Hydrogel Compositions Adapted to Achieve High Stretchable Properties. J. Mol. Genet. Med. 2015, 9, 177. [Google Scholar]
- Freitas, J.; Mahnke, L.; Estevam-Alves, M.; Santana, K.; Campos-Takaki, G. Evaluation of the potential of cadmium and dyes removal by chitosan obtained from zygomycetes. J. Mol. Genet. Med. S 2015, 4, 003. [Google Scholar]
- Sadigh-Eteghad, S.; Talebi, M.; Farhoudi, M.; Mahmoudi, J.; Reyhani, B. Effects of Levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosciences 2013, 18, 281–283. [Google Scholar]
- Thirumavalavan, M.; Lee, J. A short review on chitosan membrane for biomolecules immobilization. J. Mol. Genet. Med. 2015, 9, 178. [Google Scholar]
- Radhakrishnan, Y.; Gopal, G.; Lakshmanan, C.; Nandakumar, K. Chitosan nanoparticles for generating novel systems for better applications: A review. J. Mol. Genet. Med. 2015, 4, 005. [Google Scholar]
- Benjakul, S.; Visessanguan, W.; Tanaka, M. Partial purification and characterization of trimethylamine-N-oxide demethylase from lizardfish kidney. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003, 135, 359–371. [Google Scholar] [CrossRef]
- Balanta, D.; Zuluaga, F.; Valencia, C. Evaluation of Biocompatibility of Chitosan Films from the Mycelium of Aspergillus niger in Connective Tissue of Rattus norvegicus. J. Mol. Genet. Med. 2015, 9, 1000174. [Google Scholar]
- Zhang, Y.-J.; Gao, B.; Liu, X.-W. Topical and effective hemostatic medicines in the battlefield. Int. J. Clin. Exp. Med. 2015, 8, 10–19. [Google Scholar]
- Onishi, H.; Machida, Y.; Yoshida, R.; Watanabe, K. Formulation Study of Chitosan Microparticles Loaded with Lactoferrin. J. Mol. Genet. Med. 2015, 7, 166. [Google Scholar]
- Jain, T.; Kumar, S.; Dutta, P. Theranostics: A way of modern medical diagnostics and the role of chitosan. J. Mol. Genet. Med. 2015, 9, 159. [Google Scholar]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Lakshmanan, V.-K.; Biswas, R.; Nair, S.V.; Jayakumar, R. Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. J. Biomed. Nanotechnol. 2012, 8, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef]
- Furda, I. Interaction of dietary fiber with lipids—mechanistic theories and their limitations. In New Developments in Dietary Fiber; Springer: New York, NY, USA, 1990; pp. 67–82. [Google Scholar]
- Saboktakin, M.; Maharramov, A.; Ramazanov, M. pH sensitive chitosan-based supramolecular gel for oral drug delivery of insulin. J. Mol. Genet. Med. 2015, 9, 170. [Google Scholar]
- Heunis, T.; Dicks, L. Nanofibers offer alternative ways to the treatment of skin infections. J. Biomed. Biotechnol. 2010, 2010, 510682. [Google Scholar] [CrossRef]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed. Mater. 2011, 6, 025004. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.S.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Dong, C.; Yuan, X.; Yao, K. Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). J. Biomater. Sci. Polym. Ed. 2004, 15, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Snehal, S.P.; Jignasha, K.S. Systematic review of plant steroids as potential antiinflammatory agents: Current status and future perspectives. J. Phytopharm. 2015, 4, 121–125. [Google Scholar]
- Díaz, A.C.; Merinos, J.P.G.; López, Y.; Campos, J.B.G.; Rosa, E.; Santillan, R.; Farfán, N.; Morzycki, J.W. Regio-and stereoselective cleavage of steroidal 22-oxo-23-spiroketals catalyzed by BF3·Et2O. Steroids 2015, 100, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.; Kaishap, P.P.; Goswami, J.; Singh, A.K.; Boruah, H.P.D.; Gogoi, S.; Boruah, R.C. Synthesis of steroidal and nonsteroidal vicinal heterocyclic alcohols, N-(1-cycloalkenyl) heterocycles and their antibacterial studies. Steroids 2014, 84, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.; Abdullah, A.I. Removal of Heavy Metal Ions from Wastewater Using Hydroxyethyl Methacrylate-Modified Cellulose Nanofibers: Kinetic, Equilibrium and Thermodynamic Analysis. Int. J. Environ. Res. Public Health 2021, 18, 6581. [Google Scholar]
- Elsebai, M.F.; Kehraus, S.; Lindequist, U.; Sasse, F.; Shaaban, S.; Gutschow, M.; Josten, M.; Sahl, H.G.; Konig, G.M. Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org. Biomol. Chem. 2011, 9, 802–808. [Google Scholar] [CrossRef]
- Shaaban, S.; Negm, A.; Sobh, M.A.; Wesjohann, L.A. Expeditious Entry to Functionalized Pseudo-peptidic Organoselenide Redox Modulators via Sequential Ugi/SN Methodology. Anti-Cancer Agents Med. Chem. 2016, 16, 621–632. [Google Scholar] [CrossRef]
- Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Bowlin, G.L.; Mansfield, K.; Layman, J.; Simpson, D.G.; Sanders, E.H.; Wnek, G.E. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J. Control. Release 2002, 81, 57–64. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable electrospun fibers for drug delivery. J. Control. Release 2003, 92, 227–231. [Google Scholar] [CrossRef]
- Kim, K.; Luu, Y.K.; Chang, C.; Fang, D.; Hsiao, B.S.; Chu, B.; Hadjiargyrou, M. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release 2004, 98, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Aigner, A.; Czubayko, F.; Kissel, T.; Wendorff, J.H.; Greiner, A. Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 2005, 6, 1484–1488. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, C.-H. Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm. Res. 2006, 23, 1817. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Hebeish, A.A.; Aljafari, A.I. Synthesis and characterization of novel drug delivery system based on cellulose acetate electrospun nanofiber mats. J. Ind. Text. 2014, 43, 319–329. [Google Scholar] [CrossRef]
- Gao, Y.; Teoh, T.W.; Wang, Q.; Williams, G.R. Electrospun organic-inorganic nanohybrids as sustained release drug delivery systems. J. Mater. Chem. B 2017, 5, 9165–9174. [Google Scholar] [CrossRef] [Green Version]
- Ho, G.; Beom, S.; Lee, J.; Weon, C. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig. 2017, 47, 287–296. [Google Scholar]
- Yahya, I.; Atif, R.; Ahmed, L.; Eldeen, T.S.; Omara, A.; Eltayeb, M. Mathematical modeling of diffusion-controlled drug release profiles from nanoparticles. Int. J. Res. Sci. Innov. 2019, 6, 287–291. [Google Scholar]
- Ibrahim, S.M.; Bin Jumah, M.N.; Othman, S.I.; Alruhaimi, R.S.; Al-Khalawi, N.; Salama, Y.F.; Allam, A.A.; Abukhadra, M.R. Synthesis of Chitosan/Diatomite Composite as an Advanced Delivery System for Ibuprofen Drug; Equilibrium Studies and the Release Profile. J. ACS Omega 2021, 6, 13406–13416. [Google Scholar] [CrossRef]
- García-Couce, J.; Vernhes, M.; Bada, N.; Agüero, L.; Valdés, O.; Alvarez-Barreto, J.; Fuentes, G.; Almirall, A.; Cruz, L.J. Synthesis and evaluation of AlgNa-g-poly(QCL-co-HEMA) hydrogels for cartilage tissue engineering and controlled release of betamethasone. Int. J. Mol. Sci. 2021, 22, 5730. [Google Scholar] [CrossRef]
Elution | Petroleum Ether: Ether (10:1). |
---|---|
% Yield | 79.58 %, m.p. 110 °C. |
%C29H48NOCl requires | C, 75.48; H, 10.41; N, 3.03; O, 3.47 Cl, 7.59. |
FTIR | ν max 1697 cm−1 (C=N), 1334 cm−1 (C–N) and 1100 cm−1 (C–O), 3649 cm−1 (N–H), 2962 cm−1 (C–H) and 717 cm−1 (C–Cl). |
1HNMR (CDCl3) | δ 5.50 (1H, dd, H-6β), 3.90 (multiplet, 1H, H-3α) 2.15 (s, 3H,CH3–C=N), 1.02 (C10–CH3), 0.65 (C13–CH3), 0.98 and 0.88 (side chain methyl proton). |
Mass | m/z 461 (M+), m/z 404, m/z 57. |
Elution | Petroleum Ether: Ether (10:1). |
---|---|
Yield% | 74.91%, m.p. 110 °C |
%C31H51NO3 requires | C, 6.70; H, 10.51; N, 2.88; O, 9.91. |
FTIR | ν max 1735 cm−1 (CH3–COO–), 1685 cm−1 (C=N), 1360 cm−1 (C–N), 1270 cm−1 and 1030 cm−1 (C–O). |
1HNMR (CDCl3) | δ 5.40 (multiplet, 1H, H-6β), δ4.10 (multiplet,1H, H-3α) δ2.3 (s, 3H, CH3–C=N), δ2.10 (s,CH3–COO–), δ1.02 (C10–CH3), δ0.69 (C13 –CH3), δ 0.94 and 0.86 (side chain methyl proton). |
Mass | m/z 485 (M+), m/z 368/369, m/z 57 & m/z 59. |
Elution | Petroleum Ether: Ether (10:1). |
---|---|
Yield% | 76.2 %, m.p. 132 °C. |
% C28H47N2OCl requires | C, 78.97; H, 9.68; N, 2.55; O, 8.77. Cl 7.57 |
FTIR | V max 3564 cm−1 (–N–H), 1697 cm−1 (–CO–NH), 1380 cm−1 (C–N) and 717 cm−1 (C–Cl). |
1H-NMR (CDCl3) | 5.2 (S, 2H, exchangeable with D2O–NH2), 3.60 (multiplet 1H, H-6β, axial), 4.5 (doublet 1H, H-3α, axial). The methyl protons gave signals at δ 1.1 (C10–CH3), 0.70 (C13–CH3), 0.95, and 0.88 (side chain methyl protons). |
Mass | m/z 462/464 (M+), m/z 406 and 58/57. |
Elution | Petroleum Ether: Ether (10:1). |
---|---|
Yield% | 71.83 %, m.p. 177–178 °C. |
%C30H50N2O3 requires | C, 74.07; H, 10.28; N, 5.67; O, 9.87. |
FTIR | ν max 3548 (N–H), 1697(–COO–CH3), 1651 (NH–CO–), 1396 (C–N), 1026 (C–O). |
1HNMR (CDCl3) | δ 5.3 (s, 2H, exchangeable with D2O–NH2) 4.3 doublet, 1H, H-3 α-axial), 3.90 (multiplet centered at, 1H, H-6β), 2.5 (s, 3H, methyl proton), 1.1 (C10–CH3), 0.74 (C13–CH3), 0.97 and 0.85 (side chain methyl proton). |
Mass | m/z 484/486 (M+), m/z 368/369, m/z 57 (NH2–CO–N), m/z 59 (CH3–COO). |
Samples b | E. coli | S. aureus | ||
---|---|---|---|---|
Diameter (mm) a | % Activity Index | Diameter (mm) a | % Activity Index | |
Electrospun CH/PVP nanofibers | 0 | - | 0 | - |
Electrospun CH/PVP nanofibers containing 3β-cloro-5α-cholestano-2′-methyl-2-oxazoline | 6 | 26 | 10 | 48 |
Electrospun CH/PVP nanofibers containing 3β-acetoxy-5α cholestano-2′-methyl-2-oxazoline | 8 | 35 | 14 | 64 |
Electrospun CH/PVP nanofibers containing 3β-chloro-N-amido-5α-cholestano-aziridine | 12 | 52 | 20 | 91 |
Electrospun CH/PVP nanofibers containing 3β-acetoxy- N-amido-5α-cholestano-aziridine | 14 | 61 | 22 | 104 |
Ampicillin b | 23 | - | 21 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouda, M.; Khalaf, M.M.; Shaaban, S.; El-Lateef, H.M.A. Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System. Polymers 2022, 14, 2094. https://doi.org/10.3390/polym14102094
Gouda M, Khalaf MM, Shaaban S, El-Lateef HMA. Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System. Polymers. 2022; 14(10):2094. https://doi.org/10.3390/polym14102094
Chicago/Turabian StyleGouda, Mohamed, Mai M. Khalaf, Saad Shaaban, and Hany M. Abd El-Lateef. 2022. "Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System" Polymers 14, no. 10: 2094. https://doi.org/10.3390/polym14102094
APA StyleGouda, M., Khalaf, M. M., Shaaban, S., & El-Lateef, H. M. A. (2022). Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System. Polymers, 14(10), 2094. https://doi.org/10.3390/polym14102094