Recent Trends in Assessment of Cellulose Derivatives in Designing Novel and Nanoparticulate-Based Drug Delivery Systems for Improvement of Oral Health
Abstract
:1. Introduction
2. Cellulose and Their Derivatives
3. Origin
4. Extraction Procedures
Liquid Phase Oxidation for Extraction of Cellulose from Palm Kernel Cake (PKC)
5. Extraction from Agricultural Waste
6. Extraction from Wood
7. Extraction from Cotton
8. Extraction from Bacterial Pellicle
9. Physiochemical Properties of Different Cellulose Derivatives
10. Recent Trends in Cellulose Derivatives-Based Nanoparticule Drug Delivery Systems
- Increased drug solubility and stability, thus prolonging systemic circulation for an enhanced bioavailability.
- Site-specific targeting to the pathogenic tissues and organs.
- Aids in sense of sensitivity to the environmental stimuli (alterations in pH, heat, magnetic field or ultrasound), or to the invasive pathogen stimulation (alterations in temperature, redox environment)
11. Bacterial Cellulose
12. Role of Cellulose Derivative in Formulation of Novel Drug Delivery Systems
13. Applications of Cellulose-Based Materials in Sustained Drug Delivery Systems
14. Utilization of Bacterial Cellulose/Cellulose Derivative to Improve Oral/Dental Drug Delivery
15. Application of Cellulose Derivatives in Oral Peptide and Protein-Based Drug Delivery
16. Application of Cellulose Derivatives in Oral and Dental Treatment
17. Using of 3D-Printed Cellulose for Oral Applications
18. Conclusions
19. Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alderman, D.A.A. Review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int. J. Pharm. Technol. Prod. Manuf. 1984, 5, 1–9. [Google Scholar]
- Ganpisetti, R.; Aikaterini, L. Cellulose Bio–Ink on 3D Printing Applications. J. Young Pharm. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: A review. Chem. Soc. Rev. 2009, 38, 2046–2064. [Google Scholar] [CrossRef]
- Heinze, T.; Dicke, R.; Koschella, A.; Kull, A.H.; Klohr, E.A.; Koch, W. Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys. 2000, 201, 627–631. [Google Scholar] [CrossRef]
- Daniel, S. Biodegradable Polymeric Materials for Medicinal Applications. In Green Composites; Springer: Singapore, 2021; pp. 351–372. [Google Scholar] [CrossRef]
- Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release 2016, 224, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Wilpiszewska, K.; Antosik, A.K.; Schmidt, B.; Janik, J.; Rokicka, J. Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose. Polymers 2020, 12, 2447. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2020, 10, 935–952. [Google Scholar] [CrossRef]
- Khalil, H.A.; Bhat, A.H.; Yusra, A.I. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- O’Sullivan, A.C. Cellulose: The structure slowly unravels. Cellulose 1997, 4, 173–207. [Google Scholar] [CrossRef]
- Tahara, K.; Yamamoto, K.; Nishihata, T. Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J. Control. Release 1995, 35, 59–66. [Google Scholar] [CrossRef]
- Krögel, I.; Bodmeier, R. Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder. J. Control. Release 1999, 61, 43–50. [Google Scholar] [CrossRef]
- Shah, N.; Zhang, G.; Apelian, V.; Zeng, F.; Infeld, M.H.; Malick, A.W. Prediction of Drug Release from Hydroxypropyl Methylcellulose (HPMC) Matrices: Effect of Polymer Concentration. Pharm. Res. 1993, 10, 1693–1695. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Sunada, H. Influence of formulation change on drug release kinetics from hydroxypropyl methylcellulose matrix tablets. Chem. Pharm. Bull. 1995, 43, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.V.; Ford, J.L.; Rowe, P.; Rajabi-Siahboomi, A.R. Influence of drug: Hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J. Control. Release 1999, 57, 75–85. [Google Scholar] [CrossRef]
- Mitchell, K.; Ford, J.L.; Armstrong, D.J.; Elliot PN, C.; Hogan, J.E.; Rostron, C. The influence of substitution type on the performance of methyl cellulose and hydroxypropyl methylcellulose in gels and matrices. Eur. J. Pharm. Biopharm. 1993, 100, 143–154. [Google Scholar]
- Sheskey, P.J.; Williams, D.M. Comparison of lowshear and high-shear wet granulation techniques and the influence of percent water addition in the preparation of a controlled-release matrix tablet containing HPMC and a high dose, highly water-soluble drug. Pharm. Technol. 1996, 20, 81–92. [Google Scholar]
- Bettini, R.; Colombo, P.; Massimo, G.; Catellani, P.L.; Vitali, T. Swelling and drug release in hydrogel matrices: Polymer viscosity and matrix porosity effects. Eur. J. Pharm. Sci. 1994, 2, 213–219. [Google Scholar] [CrossRef]
- Ford, J.L.; Rubinstein, M.H.; Hogan, J.E. Formulation of sustained release promethazine hydrochloride tablets using hydroxypropyl-methylcellulose matrices. Int. J. Pharm. 1985, 24, 327–338. [Google Scholar] [CrossRef]
- Selkirk, A.B.; Ganderton, D. The influence of wet and dry granulation methods on the pore structure of lactose tablets. J. Pharm. Pharmacol. 1970, 22, 86S–94S. [Google Scholar] [CrossRef]
- Bertz, A.; Wöhl-Bruhn, S.; Miethe, S.; Tiersch, B.; Koetz, J.; Hust, M.; Menzel, H. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. J. Biotechnol. 2013, 163, 243–249. [Google Scholar] [CrossRef]
- Campos-Aldrete, M.E.; Villafuerte-Robles, L. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. Eur. J. Pharm. Biopharm. 1997, 43, 173–178. [Google Scholar] [CrossRef]
- Amaral, H.M.; Lobo SJ, M.; Ferreira, D.C. Effect of hydroxypropyl methylcellulose and hydrogenatedcastor oil on naproxen release from sustained-release tablets. AAPS Pharm. Sci. Technol. 2001, 2, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hwang, K.M.; Cho, C.H.; Nguyen, T.T.; Seok, S.H.; Hwang KMPark, E.S. Application of continuous twin screw granulation for the metformin hydrochloride extended release formulation. Int. J. Pharm. 2017, 529, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Cheong, L.W.S.; Heng, P.W.S.; Wong, L.F. Relationship Between Polymer Viscosity and Drug Release from a Matrix System. Pharm. Res. 1992, 9, 1510–1514. [Google Scholar] [CrossRef]
- Sakellariou, P.; Rowe, R.; White, E. The solubility parameters of some cellulose derivatives and polyethylene glycols used in tablet film coating. Int. J. Pharm. 1986, 31, 175–177. [Google Scholar] [CrossRef]
- Entwistle, C.A.; Rowe, R.C. Plasticization of cellulose ethers used in the film coating of tablets. J. Pharm. Pharmacol. 1979, 31, 269–272. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020, 28, 116683. [Google Scholar] [CrossRef]
- Besbes, I.; Vilar, M.R.; Boufi, S. Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: Preparation, characteristics and reinforcing potential. Carbohydr. Polym. 2011, 86, 1198–1206. [Google Scholar] [CrossRef]
- Yan, F.Y.; Krishniah, D.; Rajin, M.; Bono, A. Cellulose extraction from palm kernel cake using liquid phase oxidation. J. Eng. Sci. Technol. 2009, 1, 57–68. [Google Scholar]
- Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Durjava, M.K.; Kouba, M.; López-Alonso, M.; Puente, S.L.; Marcon, F.; et al. Safety and efficacy of ethyl cellulose for all animal species. EFSA J. 2020, 18, e06210. [Google Scholar]
- Martin-Pastor, M.; Stoyanov, E. New insights into the use of hydroxypropyl cellulose for drug solubility enhancement: An analytical study of sub-molecular interactions with fenofibrate in solid state and aqueous solutions. J. Appl. Polym. Sci. 2021, 59, 1855–1865. [Google Scholar] [CrossRef]
- Mai, N.N.S.; Otsuka, Y.; Kawano, Y.; Hanawa, T. Preparation and Characterization of Solid Dispersions Composed of Curcumin, Hydroxypropyl Cellulose and/or Sodium Dodecyl Sulfate by Grinding with Vibrational Ball Milling. Pharmaceuticals 2020, 13, 383. [Google Scholar] [CrossRef] [PubMed]
- Israel, A.U.; Obot, I.B.; Umoren, S.; Mkpenie, V.; Asuquo, J.E. Production of Cellulosic Polymers from Agricultural Wastes. E-J. Chem. 2008, 5, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 2008, 102, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.M.; Rehman, N.; De Miranda, M.I.G.; Nachtigall, S.; Bica, C.I. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 2012, 87, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Prusty, K.; Swain, S.K. Polypropylene oxide/polyethylene oxide-cellulose hybrid nanocomposite hydrogels as drug delivery vehicle. J. Appl. Polym. Sci. 2021, 138, 49921. [Google Scholar] [CrossRef]
- Ramires, E.C.; Dufresne, A. A review of cellulose nanocrystals and nanocomposites. Tappi J. 2011, 10, 9–16. [Google Scholar] [CrossRef]
- Crowley, M.M.; Schroeder, B.; Fredersdorf, A.; Obara, S.; Talarico, M.; Kucera, S.; McGinity, J.W. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm. 2003, 269, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Dahl, T.; Calderwood, T.; Bormeth, A.; Trimble, K.; Piepmeier, E. Influence of physico-chemical properties of hydroxypropyl methylcellulose on naproxen release from sustained release matrix tablets. J. Control. Release 1990, 14, 1–10. [Google Scholar] [CrossRef]
- Villetti, M.A.; Bica, C.I.D.; Garcia, I.T.S.; Pereira, F.V.; Ziembowicz, F.I.; Kloster, C.L.; Giacomelli, C. Physicochemical Properties of Methylcellulose and Dodecyltrimethylammonium Bromide in Aqueous Medium. J. Phys. Chem. B 2011, 115, 5868–5876. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emerg. Technol. 2010, 11, 697–702. [Google Scholar] [CrossRef]
- Pals, D.T.F.; Hermans, J.J. Sodium salts of pectin and of carboxy methyl cellulose in aqueous sodium chloride. I. Viscosities. Recl. Trav. Chim. Pays-Bas 1952, 71, 433–457. [Google Scholar] [CrossRef]
- Kim, G.J.; Nie, S. Targeted cancer nanotherapy. Mater. Today 2005, 8, 28–33. [Google Scholar] [CrossRef]
- Vauthier, C.; Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharm. Res. 2008, 26, 1025–1058. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 2009, 71, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-M.; Liu, R.-H. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 2013, 115, 284–290. [Google Scholar] [CrossRef]
- Ruka, D.R.; Simon, G.P.; Dean, K.M. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr. Polym. 2013, 92, 1717–1723. [Google Scholar] [CrossRef]
- Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. Bacterial synthesized cellulose—Artificial blood vessels for microsurgery. Prog. Polym. Sci. 2001, 26, 1561–1603. [Google Scholar] [CrossRef]
- Ullah, H.; Badshah, M.; Mäkilä, E.; Salonen, J.; Shahbazi, M.-A.; Santos, H.A.; Khan, T. Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose 2017, 24, 1445–1454. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Babaeipour, V.; Khanchezar, S. Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose. Iran. Polym. J. 2016, 25, 739–746. [Google Scholar] [CrossRef]
- Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv. 2015, 33, 1547–1571. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, S.; Cui, S.; Chen, F.; Jia, L.; Wang, S.; Gai, X.; Li, P.; Yang, F.; Pan, W.; et al. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets. Drug Deliv. 2017, 24, 1598–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, Z.; Ge, H.; Liu, L.; Zhu, C.; Min, L.; Liu, M.; Fan, L.; Li, D. Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Int. J. Biol. Macromol. 2018, 107, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, B.; Kay, G.; Matthews, K.; Knott, R.; Cairns, D. Preformulation of cysteamine gels for treatment of the ophthalmic complications in cystinosis. Int. J. Pharm. 2016, 515, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Furst, T.; Piette, M.; Lechanteur, A.; Evrard, B.; Piel, G. Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur. J. Pharm. Biopharm. 2015, 95, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, R.D.; Morais, A.I.; Osajima, J.A.; Nunes, L.C.; Silva Filho, E.C. Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation and release of amitriptyline. Int. J. Biol. Macromol. 2016, 86, 362–375. [Google Scholar] [CrossRef]
- Tan, H.; Wu, B.; Li, C.; Mu, C.; Li, H.; Lin, W. Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydr. Polym. 2015, 129, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Priotti, J.; Codina, A.V.; Leonardi, D.; Vasconi, M.D.; Hinrichsen, L.I.; Lamas, M.C. Albendazole Microcrystal Formulations Based on Chitosan and Cellulose Derivatives: Physicochemical Characterization and In Vitro Parasiticidal Activity in Trichinella spiralis Adult Worms. AAPS PharmSciTech 2016, 18, 947–956. [Google Scholar] [CrossRef]
- Tanaka, A.; Furubayashi, T.; Tomisaki, M.; Kawakami, M.; Kimura, S.; Inoue, D.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Nasal drug absorption from powder formulations: The effect of three types of hydroxypropyl cellulose (HPC). Eur. J. Pharm. Sci. 2017, 96, 284–289. [Google Scholar] [CrossRef]
- Tanaka, A.; Furubayashi, T.; Matsushita, A.; Inoue, D.; Kimura, S.; Katsumi, H.; Sakane, T.; Yamamoto, A. Nasal Absorption of Macromolecules from Powder Formulations and Effects of Sodium Carboxymethyl Cellulose on Their Absorption. PLoS ONE 2016, 11, e0159150. [Google Scholar] [CrossRef] [Green Version]
- Liakos, I.L.; D’Autilia, F.; Garzoni, A.; Bonferoni, C.; Scarpellini, A.; Brunetti, V.; Carzino, R.; Bianchini, P.; Pompa, P.P.; Athanassiou, A. All natural cellulose acetate—Lemongrass essential oil antimicrobial nanocapsules. Int. J. Pharm. 2016, 510, 508–515. [Google Scholar] [CrossRef]
- Pastor, M.; Esquisabel, A.; Marquínez, I.; Talavera, A.; Pedraz, J.L. Cellulose acetate phthalate microparticles containing Vibrio cholerae: Steps toward an oral cholera vaccine. J. Drug Target. 2014, 22, 478–487. [Google Scholar] [CrossRef]
- Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem. Central J. 2017, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Popov, T.A.; Åberg, N.; Emberlin, J.; Josling, P.; Ilyina, N.I.; Nikitin, N.P.; Church, M. Methyl-cellulose powder for prevention and management of nasal symptoms. Expert Rev. Respir. Med. 2017, 11, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Arca, H.; Mosquera-Giraldo, L.; Pereira, J.M.; Sriranganathan, N.; Taylor, L.S.; Edgar, K.J. Rifampin Stability and Solution Concentration Enhancement Through Amorphous Solid Dispersion in Cellulose ω-Carboxyalkanoate Matrices. J. Pharm. Sci. 2018, 107, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Rashid, R.; Kim, D.W.; Din, F.U.; Mustapha, O.; Yousaf, A.; Park, J.H.; Kim, J.O.; Yong, C.S.; Choi, H.-G. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr. Polym. 2015, 130, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Chen, H.; Rui, Y.; Yang, F.; Ma, N.; Wu, Z. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent. Int. J. Pharm. 2015, 489, 210–217. [Google Scholar] [CrossRef]
- Sheng, Y.; Gao, J.; Yin, Z.-Z.; Kang, J.; Kong, Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr. Polym. 2021, 269, 118325. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Nia, S.B.; Namazi, H. Green encapsulation of LDH(Zn/Al)-5-Fu with carboxymethyl cellulose biopolymer; new nanovehicle for oral colorectal cancer treatment. Int. J. Biol. Macromol. 2019, 139, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Kono, H. Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydr. Polym. 2014, 106, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Moertel, C.G.; Ahmann, D.L.; Taylor, W.F.; Schwartau, N. Aspirin and Pancreatic Cancer Pain. Gastroenterology 1971, 60, 552–553. [Google Scholar] [CrossRef]
- Nochos, A.; Douroumis, D.; Bouropoulos, N. In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr. Polym. 2008, 74, 451–457. [Google Scholar] [CrossRef]
- Patel, M.M.; Amin, A.F. Formulation and development of release modulated colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Drug Deliv. 2010, 18, 281–293. [Google Scholar] [CrossRef]
- Mitsumata, T.; Suemitsu, Y.; Fujii, K.; Fujii, T.; Taniguchi, T.; Koyama, K. pH-response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer 2003, 44, 7103–7111. [Google Scholar] [CrossRef]
- Takeuchi, H.; Handa, T.; Kawashima, Y. Spherical solid dispersion containing amorphous tolbutamide embedded in enteric coating polymers or colloidal silica prepared by spray-drying technique. Chem. Pharm. Bull. 1987, 35, 3800–3806. [Google Scholar] [CrossRef] [Green Version]
- Hoang, B.; Ernsting, M.J.; Tang, W.-H.S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S.-D. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett. 2017, 410, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, T.; Yan, Q. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen. J. Biomater. Sci. Polym. Ed. 2017, 29, 309–324. [Google Scholar] [CrossRef]
- Badshah, M.; Ullah, H.; Khan, A.R.; Khan, S.; Park, J.K.; Khan, T. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol. 2018, 113, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Badshah, M.; Ullah, H.; He, F.; Wahid, F.; Farooq, U.; Andersson, M.; Khan, T. Development and Evaluation of Drug Loaded Regenerated Bacterial Cellulose-Based Matrices as a Potential Dosage Form. Front. Bioeng. Biotechnol. 2020, 8, 1389. [Google Scholar] [CrossRef]
- Barud, H.G.D.O.; Da Silva, R.R.; Borges, M.A.C.; Castro, G.R.; Ribeiro, S.J.L.; Barud, H.D.S. Bacterial Nanocellulose in Dentistry: Perspectives and Challenges. Molecules 2020, 26, 49. [Google Scholar] [CrossRef]
- Heinrich, G.; Klüppel, M.; Vilgis, A.T. Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 2002, 7, 195–203. [Google Scholar] [CrossRef]
- Klüppel, M.; Schuster, R.H.; Heinrich, G. Structure and Properties of Reinforcing Fractal Filler Networks in Elastomers. Rubber Chem. Technol. 1997, 70, 243–255. [Google Scholar] [CrossRef]
- Yang, J.; Han, C.-R. Dynamics of Silica-Nanoparticle-Filled Hybrid Hydrogels: Nonlinear Viscoelastic Behavior and Chain Entanglement Network. J. Phys. Chem. C 2013, 117, 20236–20243. [Google Scholar] [CrossRef]
- Eiamtrakarn, S.; Itoh, Y.; Kishimoto, J.; Yoshikawa, Y.; Shibata, N.; Murakami, M.; Takada, K. Gastrointestinal mucoadhesive patch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomaterials 2001, 23, 145–152. [Google Scholar] [CrossRef]
- Shaji, J.; Patole, V. Protein and peptide drug delivery: Oral approaches. Indian J. Pharm. Sci. 2008, 70, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makhlof, A.; Tozuka, Y.; Takeuchi, H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci. 2011, 42, 445–451. [Google Scholar] [CrossRef]
- Del Curto, M.D.; Maroni, A.; Palugan, L.; Zema, L.; Gazzaniga, A.; Sangalli, M.E. Oral Delivery System for Two-pulse Colonic Release of Protein Drugs and Protease Inhibitor/Absorption Enhancer Compounds. J. Pharm. Sci. 2011, 100, 3251–3259. [Google Scholar] [CrossRef]
- Marschütz, M.K.; Bernkop-Schnürch, A. Oral peptide drug delivery: Polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials 2000, 21, 1499–1507. [Google Scholar] [CrossRef]
- Venkatesan, N.; Uchino, K.; Amagase, K.; Ito, Y.; Shibata, N.; Takada, K. Gastro-intestinal patch system for the delivery of erythropoietin. J. Control. Release 2006, 111, 19–26. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Dundalek, K. Novel bioadhesive drug delivery system protecting (poly)peptides from gastric enzymatic degradation. Int. J. Pharm. 1996, 138, 75–83. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.J.; Gu, B.K.; Kim, C.-H. Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl. Surf. Sci. 2012, 262, 28–33. [Google Scholar] [CrossRef]
- Teodoro, K.B.; Sanfelice, R.C.; Migliorini, F.L.; Pavinatto, A.; Facure, M.H.; Correa, D.S. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens. 2021, 6, 2473–2496. [Google Scholar] [CrossRef] [PubMed]
- Labib, G.S.; Aldawsari, H.M.; Badr-Eldin, S.M. Metronidazole and Pentoxifylline films for the local treatment of chronic periodontal pockets: Preparation, In Vitro evaluation and clinical assessment. Expert Opin. Drug Deliv. 2014, 11, 855–865. [Google Scholar] [CrossRef]
- Laffleur, F.; Krouská, J.; Tkacz, J.; Pekař, M.; Aghai, F.; Netsomboon, K. Buccal adhesive films with moisturizer-the next level for dry mouth syndrome? Int. J. Pharm. 2018, 550, 309–315. [Google Scholar] [CrossRef]
- Ammar, H.O.; Ghorab, M.M.; Mahmoud, A.A.; Shahin, H.I. Design and In Vitro/In Vivo Evaluation of Ultra-Thin Mucoadhesive Buccal Film Containing Fluticasone Propionate. AAPS PharmSciTech 2016, 18, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, K.; Yotsuyanagi, T.; Okamoto, T.; Nabeshima, T. Pain relief of oral ulcer by dibucaine-film. Pain 1999, 83, 625–626. [Google Scholar] [CrossRef]
- Oguchi, M.; Shikama, N.; Sasaki, S.; Gomi, K.; Katsuyama, Y.; Ohta, S.; Hori, M.; Takei, K.; Arakawa, K.; Sone, S. Mucosa-adhesive water-soluble polymer film for treatment of acute radiation-induced oral mucositis. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 1033–1037. [Google Scholar] [CrossRef]
- Kohda, Y.; Kobayashi, H.; Baba, Y.; Yuasa, H.; Ozeki, T.; Kanaya, Y.; Sagara, E. Controlled release of lidocaine hydrochloride from buccal mucosa-adhesive films with solid dispersion. Int. J. Pharm. 1997, 158, 147–155. [Google Scholar] [CrossRef]
- Mohammed, F.A.; Khedr, H. Preparation and In vitro/In vivo evaluation of the buccal bioadhesive properties of slow-release tablets containing miconazole nitrate. Drug Dev. Ind. Pharm. 2003, 29, 321–337. [Google Scholar] [CrossRef]
- Ceschel, G.C.; Maffei, P.; Lombardi Borgia, S.; Ronchi, C. Design and evaluation of buccal adhesive hydrocortisone acetate (HCA) tablets. Drug Deliv. 2001, 8, 161–167. [Google Scholar] [PubMed]
- Kamel, S.; Ali, N.; Jahangir, K.; Shah, S.M.; El-Gendy, A.A. Pharmaceutical significance of cellulose: A review. Express Polym. Lett. 2008, 2, 758–778. [Google Scholar] [CrossRef]
- Fini, A.; Bergamante, V.; Ceschel, G.C. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 2011, 3, 665. [Google Scholar] [CrossRef] [Green Version]
- Bansal, K.; Rawat, M.K.; Jain, A.; Rajput, A.; Chaturvedi, T.P.; Singh, S. Development of Satranidazole Mucoadhesive Gel for the Treatment of Periodontitis. AAPS PharmSciTech 2009, 10, 716–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandler, N.; Preis, M. Printed Drug-Delivery Systems for Improved Patient Treatment. Trends Pharmacol. Sci. 2016, 37, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, J.; Khinast, J. The Future of Pharmaceutical Manufacturing Sciences. J. Pharm. Sci. 2015, 104, 3612–3638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giri, B.R.; Poudel, S.; Kim, D.W. Cellulose and its derivatives for application in 3D printing of pharmaceuticals. J. Pharm. Investig. 2020, 51, 1–22. [Google Scholar] [CrossRef]
- Schubert, C.; Van Langeveld, M.C.; Donoso, L.A. Innovations in 3D printing: A 3D overview from optics to organs. Br. J. Ophthalmol. 2013, 98, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses, P T. J. Formul. Manag. 2014, 39, 704–711. [Google Scholar]
- Banks, J. Adding Value in Additive Manufacturing: Researchers in the United Kingdom and Europe Look to 3D Printing for Customization. IEEE Pulse 2013, 4, 22–26. [Google Scholar] [CrossRef]
- Kubáč, L.; Kodym, O. The Impact of 3D Printing Technology on Supply Chain. In MATEC Web Conference; Romanian-American University: Bucharest, Romania, 2017. [Google Scholar]
- Gross, B.C.; Erkal, J.L.; Lockwood, S.Y.; Chen, C.; Spence, D.M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Anal. Chem. 2014, 86, 3240–3253. [Google Scholar] [CrossRef]
- Jassim-Jaboori, A.H.; Oyewumi, M.O. 3D Printing Technology in Pharmaceutical Drug Delivery: Prospects and Challenges. J. Biomol. Res. Ther. 2015, 4, e141. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Vo, A.Q.; Feng, X.; Ye, X.; Kim, D.W.; Repka, M.A. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr. Polym. 2017, 177, 49–57. [Google Scholar] [CrossRef]
- Khaled, S.A.; Burley, J.C.; Alexander, M.; Yang, J.; Roberts, C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J. Control. Release 2015, 217, 308–314. [Google Scholar] [CrossRef]
- Bennett, R.C.; Keen, J.M.; Bi, Y.; Porter, S.; Dürig, T.; McGinity, J.W. Investigation of the interactions of enteric and hydrophilic polymers to enhance dissolution of griseofulvin following hot melt extrusion processing. J. Pharm. Pharmacol. 2015, 67, 918–938. [Google Scholar] [CrossRef]
- Goyanes, A.; Det-Amornrat, U.; Wang, J.; Basit, A.W.; Gaisford, S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J. Control. Release 2016, 234, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kempin, W.; Franz, C.; Koster, L.-C.; Schneider, F.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur. J. Pharm. Biopharm. 2017, 115, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.W.; Newton, J.M.; Short, M.D.; Waddington, W.A.; Ell, P.J.; Lacey, L.F. The Effect of Polyethylene Glycol 400 on Gastrointestinal Transit: Implications for the Formulation of Poorly-Water Soluble Drugs. Pharm. Res. 2001, 18, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W. Final Report on the Safety Assessment of Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate. Int. J. Toxicol. 2002, 21, 1–17. [Google Scholar] [CrossRef]
- Oosaka, K.; Tokuda, M.; Furukawa, N. Intra-gastric triacetin alters upper gastrointestinal motility in conscious dogs. World J. Gastroenterol. 2014, 20, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.A.; Felimban, R.I.; Tayeb, H.H.; Rizg, W.Y.; Alnadwi, F.H.; Alotaibi, H.A.; Alhakamy, N.A.; Abd-Allah, F.I.; Mohamed, G.A.; Zidan, A.S.; et al. Development of Multi-Compartment 3D-Printed Tablets Loaded with Self-Nanoemulsified Formulations of Various Drugs: A New Strategy for Personalized Medicine. Pharmaceutics 2021, 13, 1733. [Google Scholar] [CrossRef]
- Vasanthavada, M.; Wang, Y.; Haefele, T.; Lakshman, J.P.; Mone, M.; Tong, W.; Joshi, Y.M.; Serajuddin, A.T. Application of Melt Granulation Technology Using Twin-screw Extruder in Development of High-dose Modified-Release Tablet Formulation. J. Pharm. Sci. 2011, 100, 1923–1934. [Google Scholar] [CrossRef] [PubMed]
- Arafat, B.; Wojsz, M.; Isreb, A.; Forbes, R.T.; Isreb, M.; Ahmed, W.; Arafat, T.; Alhnan, M.A. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur. J. Pharm. Sci. 2018, 118, 191–199. [Google Scholar] [CrossRef]
- Melocchi, A.; Parietti, F.; Loreti, G.; Maroni, A.; Gazzaniga, A.; Zema, L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Deliv. Sci. Technol. 2015, 30, 360–367. [Google Scholar] [CrossRef]
- Fanous, M.; Gold, S.; Hirsch, S.; Ogorka, J.; Imanidis, G. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance. Eur. J. Pharm. Sci. 2020, 155, 105558. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Y.; Wei, S.; Shan, W. Oral preparations with tunable dissolution behavior based on selective laser sintering technique. Int. J. Pharm. 2020, 593, 120127. [Google Scholar] [CrossRef]
- Yoon, H.S.; Yang, K.; Kim, Y.M.; Nam, K.; Roh, Y.H. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing. Carbohydr. Polym. 2021, 272, 118469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, P.; Vo, A.Q.; Bandari, S.; Yang, F.; Durig, T.; Repka, M.A. Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. J. Drug Deliv. Sci. Technol. 2019, 52, 292–302. [Google Scholar] [CrossRef]
Name | Ethyl Cellulose (EC) | Hydroxyl Propyl Cellulose (HPC) | Methyl Cellulose (MC) | Hydroxyl Propyl Methyl Cellulose (HPMC) | Carboxy Methyl Cellulose (CMC) | Sodium Carboxy Methyl Cellulose (Na-CMC) |
---|---|---|---|---|---|---|
Chemical Structure | | | | | | |
Molecular weight | 454.513 g/mol | average Mn ~10,000 g/mol | 454.513 g/mol | 1261.45 g/mol | 180.15588 g/mol | 262.19 g/mol |
Viscosity | 5% in toluene/ethanol 80:20(lit.) is 46 cP. | The value of [η] decreases strongly with increasing temperature | 2% of solution in water at 25 °C is 4500 cP. | 2% of solution in water at 25 °C is 2500–5600 cP. | 2 % of solution in water at 25 °C is 400–800 cP. | 1 % of solution in water at 25 °C is 1500–3000 cP. |
Solubility | Practically insoluble in water (room temperature) | Soluble in water, methyl alcohol, ethyl alcohol (Room temperature) | Soluble in water (Room temperature) | Soluble in water 50 mg/mL (Room temperature) | Soluble in water 20 mg/mL (Room temperature) | Soluble in water 10 mg/mL (Room temperature) |
Use | Ethyl cellulose is used as a food additive and stabilizer for all animal feeds (Bampidis et al., 2020) and as an emulsifier [30] | It is used as an excipient, and topical ophthalmic protectant, solubility enhancer used for nanosuspensions, amorphous solid dispersions and poorly soluble drugs, and lubricant. Mai et al., 2020; Martin-Pastor, 2021, [31] | Bulk forming laxatives, artificial tears products [32] | Excipient in high speed tableting and capsule formulations. Controlled release agent. [33] | Used as viscosity modifiers; Emulsion stabilizer of injections; Adhesion and film-forming agents of tablets [34] | Used as a thickening agent Dispersion, emulsification, suspension, protective colloid [35] |
S. No | Parameters/Characterizations | Intention of Analysis |
---|---|---|
1 | FTIR | To determine the effects of various ingredients (like BC or RBC) on the purity of model drug |
2 | PXRD | To determine the crystallinity of BC or RBC based drugs |
3 | SEM | To evaluate the surface morphology of BC or RBC based drug delivery systems |
4 | DSC | To evaluate the interaction between BC or RBC and model drug |
5 | TGA | To analyze the thermo-stability of BC or RBC based drug delivery system |
6 | Loading efficiency | To check the percent drug loading of matrices/composites prepared BC or RBC |
7 | Release study | To check the release of model drug from BC or RBC based matrices or composites. |
8 | Release kinetics | To evaluate the mechanism of release like zero order, 1st order or pseudo order, fickian and non fickian behavior |
9 | Thickness | Drug matrices prepared with BC or RBC are subjected for thickness evaluation using vernier caliper. |
10 | Friability | To determine the withstanding power of prepared matrices based on BC or RBC. |
Cellulose Polymer Used | Oral Delivery System | Peptide or Protein Used | Reference |
---|---|---|---|
Ethyl cellulose a, Hydroxypropyl methylcellulose phthalate a | Gastrointestinal mucoadhesive patch system (GI-MAPS) | G-CSF | [89] |
Hydroxypropyl methyl cellulose a,b | Pulsatile drug delivery systems (PDDS) | Insulin | [88] |
Hydroxypropyl methylcellulose phthalate a | Chitosan-based polymeric nanoparticles | Insulin | [87] |
Sodiumcarboxy methylcellulose b | Polymer-inhibitor conjugates | Insulin | [89] |
Cellulose acetate a | Gastro-intestinal patch system (GI-PS) | Erythropoietin | [90] |
Sodiumcarboxy methylcellulose b | Pepstatin-matrix conjugate | Pepstatin A | [91] |
Carboxymethyl cellulose b | Crosslinked alginate–carboxymethyl cellulose beads | Albumin | [92] |
Dosage Form | Cellulose Type | Application | 3D Printing Technique | Reference |
---|---|---|---|---|
3D printed Tablets | HPMC | To optimize viscosity and to control the release | Extrusion printing | [122] |
3D printed Tablets | HPC | to accelerate tablet disintegration and drug release. | Fused deposition modelling (FDM) 3D printing | [124] |
3D-printed swellable/erodible capsular device | HPC | To create erodible capsular device for pulsatile oral application | Fused deposition modelling (FDM) 3D printing | [125] |
immediate release (IR) 3D-printed oral dosage forms | HPC | To develop formulations industrially relevant | Fused deposition modelling (FDM) 3D printing | [126] |
Oral tablets | EC | To develop adjustable dissolution behavior based on selective laser sintering technique | Selective laser sintering (SLS) 3D printing | [127] |
Oral tablets | cellulose nanocrystals (CNCs) | Used as support materials for printing | droplet-based freeform 3D printing | [128] |
Oral tablets | HPMC, HPC, EC | To investigate the effect of cellulose filaments on in-vitro drug release performance | Hot melt extrusion (HME) 3D printing | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosny, K.M.; Alkhalidi, H.M.; Alharbi, W.S.; Md, S.; Sindi, A.M.; Ali, S.A.; Bakhaidar, R.B.; Almehmady, A.M.; Alfayez, E.; Kurakula, M. Recent Trends in Assessment of Cellulose Derivatives in Designing Novel and Nanoparticulate-Based Drug Delivery Systems for Improvement of Oral Health. Polymers 2022, 14, 92. https://doi.org/10.3390/polym14010092
Hosny KM, Alkhalidi HM, Alharbi WS, Md S, Sindi AM, Ali SA, Bakhaidar RB, Almehmady AM, Alfayez E, Kurakula M. Recent Trends in Assessment of Cellulose Derivatives in Designing Novel and Nanoparticulate-Based Drug Delivery Systems for Improvement of Oral Health. Polymers. 2022; 14(1):92. https://doi.org/10.3390/polym14010092
Chicago/Turabian StyleHosny, Khaled M., Hala M. Alkhalidi, Waleed S. Alharbi, Shadab Md, Amal M. Sindi, Sarah A. Ali, Rana B. Bakhaidar, Alshaimaa M. Almehmady, Eman Alfayez, and Mallesh Kurakula. 2022. "Recent Trends in Assessment of Cellulose Derivatives in Designing Novel and Nanoparticulate-Based Drug Delivery Systems for Improvement of Oral Health" Polymers 14, no. 1: 92. https://doi.org/10.3390/polym14010092
APA StyleHosny, K. M., Alkhalidi, H. M., Alharbi, W. S., Md, S., Sindi, A. M., Ali, S. A., Bakhaidar, R. B., Almehmady, A. M., Alfayez, E., & Kurakula, M. (2022). Recent Trends in Assessment of Cellulose Derivatives in Designing Novel and Nanoparticulate-Based Drug Delivery Systems for Improvement of Oral Health. Polymers, 14(1), 92. https://doi.org/10.3390/polym14010092