Experimental Study on Axial Compressive Performance of Polyvinyl Alcohol Fibers Reinforced Fly Ash—Slag Geopolymer Composites
Abstract
:1. Introduction
2. Experiment Program
2.1. Materials
2.2. Specimens and Mix Proportions
2.3. Test Setup
2.3.1. Axial Compression Test
2.3.2. SEM Test
3. Results and Discussions
3.1. Failure Modes
3.2. Stress–Strain Curves
3.3. Compressive Strength
3.4. Elastic Modulus and Poisson’s Ratio
3.5. Microstructural Analysis Results
4. Conclusions
- PFRGCs without PVA fibers (GCs) show typical brittle failure. The addition of PVA fibers improved the ductility of GCs. Different from the failure mode of GCs, visible protrusions can be seen in the middle of the PFRGCs, and the specimens showed a multi-cracking characteristic and ductile behavior.
- The compressive strength of the specimens decreases with increasing PVA fibers at a given mass ratio of fly ash. With the increase of low-calcium fly ash/PVA fibers, the number of unreacted fly ash particles in PFRGCs increases. Too many unreacted fly ash particles make GC more prone to micro-cracks during loading, adversely affecting compressive properties. The compressive strength of PFRGCs with 0.6 vol.% PVA fibers is 16.5–19.8% lower than that of PFRGCs without PVA fibers. Under the condition of three volume ratio of PVA fibers (0 vol.%, 0.6 vol.%, 1.2 vol.%), the compressive strength of PFRGCs decreases with the increasing fly ash.
- Under the given volume ratio of PVA fibers, the increase of fly ash leads to a decrease in compressive strength and an increase in ductility. The compressive strength of PFRGCs with 40 mt.% fly ash and without PVA fibers is the highest, while that of the PFRGCs with 80 vol.% fly ash and 1.2 mt.% PVA fibers are the weakest. With an increase in the PVA fibers at a given mass ratio of fly ash, the compressive strength of specimens decreases gradually, but the final strain has no obvious rule.
- The elastic modulus of PFRGCs decreases with the increasing PVA fibers at a given mass ratio of fly ash. With the increase of low-calcium fly ash/PVA fibers, the number of unreacted fly ash particles in PFRGCs increases. PFRGCs with 40 mt.% fly ash and 0 vol.% PVA fibers have the highest elastic modulus of 17.3 GPa.
- When the mass ratio of fly ash is 40% and 60%, the Poisson’s ratio of PFRGCs first increases and then decreases with the increasing PVA fibers. The Poisson’s ratio of PFRGCs increases first and then decreases with the increasing fly ash when the volume ratio of PVA fibers is constant, except that the volume ratio of PVA fibers is 1.2%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, J.; Verma, M.; Misra, A. Effect of global warming on sea level rise: A modeling study. Ecol. Complex. 2017, 32, 99–110. [Google Scholar] [CrossRef]
- Varotsos, C.; Mazei, Y.; Efstathiou, M. Paleoecological and recent data show a steady temporal evolution of carbon dioxide and temperature. Atmos. Pollut. Res. 2020, 11, 714–722. [Google Scholar] [CrossRef]
- Chuai, X.; Lu, Q.; Huang, X.; Gao, R.; Zhao, R. China’s construction industry-linked economy-resources-environment flow in international trade. J. Clean. Prod. 2021, 278, 123990. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S. Global warming potential and energy consumption of temporary works in building construction: A case study in Hong Kong. Build. Environ. 2018, 142, 171–179. [Google Scholar] [CrossRef]
- Bribian, I.Z.; Usón, A.A.; Scarpellini, S. Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Build. Environ. 2009, 44, 2510–2520. [Google Scholar] [CrossRef]
- Akan, M.; Övül, A.; Dhavale, D.G.; Sarkis, J. Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. J. Clean. Prod. 2017, 167, 1195–1207. [Google Scholar] [CrossRef]
- Peng, J.X.; Huang, L.; Zhao, Y.B.; Chen, P.; Zeng, L.; Zheng, W. Modeling of Carbon Dioxide Measurement on Cement Plants. Adv. Mater. Res. 2012, 610–613, 2120–2128. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Jindal, B.B.; Jangra, P.; Garg, A. Effects of ultra fine slag as mineral admixture on the compressive strength, water absorption and permeability of rice husk ash based geopolymer concrete. Mater. Today Proc. 2020, 32, 871–877. [Google Scholar] [CrossRef]
- Lahoti, M.; Wong, K.K.; Tan, K.H.; Yang, E.-H. Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Mater. Des. 2018, 154, 8–19. [Google Scholar] [CrossRef]
- Han, F.; Philip, V. Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending. J. Constr. Steel Res. 2022, 188, 107026. [Google Scholar] [CrossRef]
- Habert, G.; De Lacaillerie, J.D.E.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G. Synthesis and characterization of redmud and rice husk ash-based geopolymer composites. Cement Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, K.; Wang, S.; Wang, Z.; Yang, Z.; Shumuye, E.; Gong, X. Effect of Elevated Temperature on Mechanical Properties of High-Volume Fly Ash-Based Geopolymer Concrete, Mortar and Paste Cured at Room Temperature. Polymer 2021, 13, 1473. [Google Scholar] [CrossRef]
- Xiao, R.; Ma, Y.; Jiang, X.; Zhang, M.; Zhang, Y.; Wang, Y.; Huang, B.; He, Q. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J. Clean. Prod. 2020, 252, 119610. [Google Scholar] [CrossRef]
- Singh, N. Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals 2018, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Qiu, G.H.; Kodur, V.; Yuan, Z.S. Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cem. Concr. Compos. 2020, 106, 103483. [Google Scholar] [CrossRef]
- Junaid, M.T.; Khennane, A.; Kayali, O. Performance of fly ash based geopolymer concrete made using non-pelletized fly ash aggregates after exposure to high temperatures. Mater. Struct. 2014, 48, 3357–3365. [Google Scholar] [CrossRef]
- Tittarelli, F.; Giosuè, C.; Mobili, A.; DI Perna, C.; Monosi, S. Effect of Using Recycled Instead of Virgin EPS in Lightweight Mortars. Procedia Eng. 2016, 161, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, C.; Law, D.; Bhuiyan, S.; Setunge, S.; Ward, L. Chloride induced corrosion in different fly ash based geopolymer concretes. Constr. Build. Mater. 2019, 200, 502–513. [Google Scholar] [CrossRef]
- Ariffin, M.; Bhutta, M.; Hussin, M.; Tahir, M.M.; Aziah, N. Sulfuric acid resistance of blended ash geopolymer concrete. Constr. Build. Mater. 2013, 43, 80–86. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J.; Ng, T.; Sanjayan, J.G.; Gilbert, R.I. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. 2016, 49, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- Sarker, P.; Haque, R.; Ramgolam, K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater. Des. 2013, 44, 580–586. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Rangan, B.V. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011, 63, 763–771. [Google Scholar] [CrossRef]
- Mahmood, A.; Noman, M.; Pechočiaková, M.; Amor, N.; Petrů, M.; Abdelkader, M.; Militký, J.; Sozcu, S.; Hassan, S. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymer 2021, 13, 2099. [Google Scholar] [CrossRef]
- de Azevedo, A.; Cruz, A.; Marvila, M.; de Oliveira, L.; Monteiro, S.; Vieira, C.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymer 2021, 13, 2493. [Google Scholar] [CrossRef]
- Gülşan, M.E.; Alzeebaree, R.; Rasheed, A.A.; Niş, A.; Kurtoğlu, A.E. Development of fly ash/slag based self-compacting geo-polymer concrete using nano-silica and steel fiber. Constr. Build. Mater. 2019, 211, 271–283. [Google Scholar] [CrossRef]
- Bernal, S.; Gutierrez, R.D.; Delvasto, S.; Rodriguez, E. Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 2010, 24, 208–214. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N.S. Engineering Properties of Ambient Cured Alkali-Activated Fly Ash–Slag Concrete Reinforced with Different Types of Steel Fiber. J. Mater. Civ. Eng. 2018, 30, 04018142. [Google Scholar] [CrossRef] [Green Version]
- Heard, W.; Basu, P.; Slawson, T.; Nordendale, N. Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads. Procedia Eng. 2011, 10, 3020–3025. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 349, 92–98. [Google Scholar] [CrossRef]
- Liang, M.; Fu, C.; Xiao, B.; Luo, L.; Wang, Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019, 137, 365–371. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M.; Erdem, S. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Sun, W.; Li, Z.J.; Zhou, X.M.; Eddie; Chau, C.K. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Constr. Build. Mater. 2008, 22, 370–383. [Google Scholar]
- Li, Z.; Zhang, Y.; Zhou, X. Short Fiber Reinforced Geopolymer Composites Manufactured by Extrusion. J. Mater. Civ. Eng. 2005, 17, 624–631. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Li, Z.; Zhou, X. Geopolymer extruded composites with incorporated fly ash and polyvinyl alcohol short fiber. ACI Mater. J. 2009, 106, 3–10. [Google Scholar]
- Xiao, S.-H.; Liao, S.-J.; Zhong, G.-Q.; Guo, Y.-C.; Lin, J.-X.; Xie, Z.-H.; Song, Y. Dynamic properties of PVA short fiber reinforced low-calcium fly ash-slag geopolymer under an SHPB impact load. J. Build. Eng. 2021, 44, 103220. [Google Scholar] [CrossRef]
- Qin, L.F.; Qu, B.; Shi, C.J.; Zhang, J.H. Effect of Ca/Si ratio on the formation and characteristics of aluminosilicate gel. Mater. Rep. 2020, 34, 12057. [Google Scholar]
- Nath, P.; Sarker, P. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef] [Green Version]
- GB/T 14684-2011; Sand for Construction. Standards Press of China: Beijing, China, 2011.
- BS 882:1992; Specification for Aggregates from Natural Sources for Concrete. British Standards Institutuion: London, UK, 1992.
- ASTM C469; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. American Society for Testing and Materials: West Conshohocken, PA, USA, 2002.
- CECS 13-2009; Standard Test Methods for Fiber Reinforced Concrete. Planning Press of China: Beijing, China, 2009.
- ASTM C39; Standard Test Mothed for Compressive Strength of Cylindrical Concrete Specimens. American Associationof State Highway and Transportation Officials: West Conshohocken, PA, USA, 2018.
- Lin, J.-X.; Song, Y.; Xie, Z.-H.; Guo, Y.-C.; Yuan, B.; Zeng, J.-J.; Wei, X. Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers. J. Build. Eng. 2020, 29, 101097. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, J.; Zheng, W.; Li, J. Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Constr. Build. Mater. 2018, 192, 194–201. [Google Scholar] [CrossRef]
- Guo, Y.-C.; Zhang, J.-H.; Chen, G.-M.; Xie, Z.-H. Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures. J. Clean. Prod. 2014, 72, 193–203. [Google Scholar] [CrossRef]
- Zhou, J.-K.; Lin, W.-K.; Guo, S.-X.; Zeng, J.-J.; Bai, Y.-L. Behavior of FRP-confined FRP spiral reinforced concrete square columns (FCFRCs) under axial compression. J. Build. Eng. 2021, 45, 103452. [Google Scholar] [CrossRef]
- Liao, J.; Yang, K.Y.; Zeng, J.-J.; Quach, W.-M.; Ye, Y.-Y.; Zhang, L. Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) in circular columns. Eng. Struct. 2021, 249, 113246. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Ye, Y.-Y.; Quach, W.-M.; Lin, G.; Zhuge, Y.; Zhou, J.-K. Compressive and transverse shear behaviour of novel FRP-UHPC hybrid bars. Compos. Struct. 2021, 115001. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | SO3 | K2O |
Proportion (%) | 50.8 | 28.1 | 6.2 | 3.7 | 1.2 | 1.2 | 0.8 | 0.6 |
Specimen | Mix Proportions by Weight (kg/m3) | Ratio (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coarse Aggregate | Fine Aggregate | Slag | Fly Ash | Na2SiO3 | NaOH | Water | PVA Fibers | Fly Ash (MR, %) | PVA Fibers (VR, %) | |
F40-P0 | 1294 | 554 | 220.80 | 147.20 | 131 | 53 | 43.20 | 0 | 40 | 0 |
F40-P0.6 | 14.66 | 0.6 | ||||||||
F40-P1.2 | 29.32 | 1.2 | ||||||||
F60-P0 | 1294 | 554 | 147.20 | 220.80 | 131 | 53 | 43.20 | 0 | 60 | 0 |
F60-P0.6 | 14.66 | 0.6 | ||||||||
F60-P1.2 | 29.32 | 1.2 | ||||||||
F80-P0 | 1294 | 554 | 73.60 | 294.40 | 131 | 53 | 43.20 | 0 | 80 | 0 |
F80-P0.6 | 14.66 | 0.6 | ||||||||
F80-P1.2 | 29.32 | 1.2 | ||||||||
F100-P0 | 1294 | 554 | - | 368.00 | 131 | 53 | 43.20 | 0 | 100 | 0 |
Specimens | Compressive Strength (MPa) | Ultimate Strain | Elasticity Modulus (GPa) | Poisson’s Ratios | |||||
---|---|---|---|---|---|---|---|---|---|
Test Average | Test Average | Test Average | Test Average | ||||||
F40-P0 | 1 | 60.23 | 59.49 | 0.0047 | 0.0046 | 16.88 | 17.29 | 0.292 | 0.285 |
2 | 58.25 | 0.0042 | 17.47 | 0.297 | |||||
3 | 60.00 | 0.0048 | 17.53 | 0.265 | |||||
F40-P0.6 | 1 | 49.05 | 48.18 | 0.0062 | 0.0056 | 13.07 | 13.09 | 0.320 | 0.319 |
2 | 47.52 | 0.0058 | 13.11 | 0.313 | |||||
3 | 47.96 | 0.0046 | 13.08 | 0.324 | |||||
F40-P1.2 | 1 | 30.55 | 30.22 | 0.0038 | 0.0039 | 12.61 | 12.57 | 0.180 | 0.189 |
2 | 29.88 | 0.0040 | 11.82 | 0.179 | |||||
3 | 25.52 | 0.0038 | 13.29 | 0.208 | |||||
F60-P0 | 1 | 45.99 | 46.86 | 0.0047 | 0.0047 | 13.78 | 13.37 | 0.373 | 0.346 |
2 | 47.52 | 0.0046 | 13.21 | 0.327 | |||||
3 | 47.08 | 0.0047 | 13.11 | 0.338 | |||||
F60-P0.6 | 1 | 40.07 | 39.15 | 0.0050 | 0.0058 | 10.71 | 10.62 | 0.343 | 0.352 |
2 | 38.76 | 0.0070 | 10.37 | 0.359 | |||||
3 | 38.61 | 0.0051 | 10.79 | 0.355 | |||||
F60-P1.2 | 1 | 7.38 | 7.61 | 0.0042 | 0.0043 | 7.78 | 7.83 | 0.307 | 0.285 |
2 | 7.72 | 0.0045 | 7.89 | 0.264 | |||||
3 | 7.72 | 0.0040 | 7.82 | 0.283 | |||||
F80-P0 | 1 | 32.19 | 32.70 | 0.0047 | 0.0045 | 13.17 | 13.11 | 0.227 | 0.226 |
2 | 33.06 | 0.0044 | 13.26 | 0.212 | |||||
3 | 32.85 | 0.0041 | 12.90 | 0.238 | |||||
F80-P0.6 | 1 | 26.49 | 26.42 | 0.0058 | 0.0057 | 10.63 | 9.82 | 0.221 | 0.205 |
2 | 24.30 | 0.0058 | 8.85 | 0.196 | |||||
3 | 28.47 | 0.0054 | 9.97 | 0.198 | |||||
F80-P1.2 | 1 | 3.35 | 3.46 | 0.0036 | 0.0039 | 1.87 | 1.84 | 0.366 | 0.355 |
2 | 3.69 | 0.0040 | 1.81 | 0.340 | |||||
3 | 3.35 | 0.0040 | 1.84 | 0.358 | |||||
F100-P0 | 1 | 9.19 | 8.90 | 0.0035 | 0.0038 | 8.70 | 8.42 | 0.191 | 0.168 |
2 | 9.19 | 0.0037 | 8.14 | 0.145 | |||||
3 | 8.32 | 0.0041 | 8.42 | 0.168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Cai, Y.; Guo, Y.; Lin, J.; Liu, G.; Lan, X.; Song, Y. Experimental Study on Axial Compressive Performance of Polyvinyl Alcohol Fibers Reinforced Fly Ash—Slag Geopolymer Composites. Polymers 2022, 14, 142. https://doi.org/10.3390/polym14010142
Xiao S, Cai Y, Guo Y, Lin J, Liu G, Lan X, Song Y. Experimental Study on Axial Compressive Performance of Polyvinyl Alcohol Fibers Reinforced Fly Ash—Slag Geopolymer Composites. Polymers. 2022; 14(1):142. https://doi.org/10.3390/polym14010142
Chicago/Turabian StyleXiao, Shuhua, Yongjian Cai, Yongchang Guo, Jiaxiang Lin, Guotao Liu, Xuewei Lan, and Ying Song. 2022. "Experimental Study on Axial Compressive Performance of Polyvinyl Alcohol Fibers Reinforced Fly Ash—Slag Geopolymer Composites" Polymers 14, no. 1: 142. https://doi.org/10.3390/polym14010142
APA StyleXiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., & Song, Y. (2022). Experimental Study on Axial Compressive Performance of Polyvinyl Alcohol Fibers Reinforced Fly Ash—Slag Geopolymer Composites. Polymers, 14(1), 142. https://doi.org/10.3390/polym14010142