Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of RPP-Based Nanocomposites
2.3. Characterization of the Films
2.3.1. Structural Analysis
2.3.2. Thermal Analysis
2.3.3. Mechanical Properties
2.3.4. Overall Migration Analysis
2.4. Statistical Analysis
3. Results
3.1. Structural Properties
3.2. Thermal Properties
3.2.1. Differential Scanning Calorimetry
3.2.2. Thermogravimetric Analysis
3.3. Mechanical Properties
3.4. Overall Migration Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe Market Research Group and Conversio Market & Strategy GmbH; 2019. Available online: https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed on 1 April 2021).
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef] [Green Version]
- Zdiri, K.; Elamri, A.; Hamdaoui, M.; Harzallah, O.; Khenoussi, N.; Brendlé, J. Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 2018, 11, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef] [Green Version]
- Zdiri, K.; Elamri, A.; Hamdaoui, M.; Khenoussi, N.; Harzallah, O.; Brendle, J. Impact of Tunisian clay nanofillers on structure and properties of post-consumer polypropylene-based nanocomposites. J. Thermoplast. Compos. Mater. 2019, 32, 1159–1175. [Google Scholar] [CrossRef]
- Zdiri, K.; Elamri, A.; Hamdaoui, M.; Harzallah, O.; Khenoussi, N.; Brendlé, J. Valorization of Post-consumer PP by (Un)modified Tunisian Clay Nanoparticles Incorporation. Waste Biomass-Valorization 2020, 11, 2285–2296. [Google Scholar] [CrossRef]
- Zdiri, K.; Harzallah, O.; Elamri, A.; Khenoussi, N.; Brendlé, J.; Mohamed, H. Rheological and thermal behavior of Tunisian clay reinforced recycled polypropylene composites. Adv. Polym. Technol. 2018, 37, 3759–3768. [Google Scholar] [CrossRef]
- Al-Samhan, M.; Samuel, J.; Al-Attar, F.; Abraham, G. Comparative Effects of MMT Clay Modified with Two Different Cationic Surfactants on the Thermal and Rheological Properties of Polypropylene Nanocomposites. Int. J. Polym. Sci. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- De Dicastillo, C.L.; Velásquez, E.; Rojas, A.; Guarda, A.; Galotto, M.J. The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1760–1776. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Orbell, J.D.; Buddhadasa, S.; Bigger, S.W. Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Compr. Rev. Food Sci. Food Saf. 2015, 14, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Farhoodi, M. Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation. Food Eng. Rev. 2015, 8, 35–51. [Google Scholar] [CrossRef]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro Lett. 2020, 12, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Materials, E.E.P.O.F.C.; Flavourings, E.P.O.F.C.M.E.; (Cef), P.A. Safety assessment of the substance montmorillonite clay modified by dimethyldialkyl(C16-C18)ammonium chloride for use in food contact materials. EFSA J. 2015, 13, 4285. [Google Scholar] [CrossRef]
- Xia, Y.; Rubino, M.; Auras, R. Chapter Seven—Interaction of nanoclay-reinforced packaging nanocomposites with food sim-ulants and compost environments. In Food Applications of Nanotechnology; Lim, L.-T., Rogers, M.B.T.-A., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 88, pp. 275–298. ISSN 1043-4526. [Google Scholar]
- Bott, J.; Franz, R. Investigatio into the Potential Migration of Nanoparticles from Laponite-Polymer Nanocomposites. Nanomaterials 2018, 8, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Rubino, M.; Auras, R. Release of Nanoclay and Surfactant from Polymer–Clay Nanocomposites into a Food Simulant. Environ. Sci. Technol. 2014, 48, 13617–13624. [Google Scholar] [CrossRef]
- Farhoodi, M.; Mousavi, S.M.; Sotudeh-Gharebagh, R.; Emam-Djomeh, Z.; Oromiehie, A. Migration of Aluminum and Silicon from PET/Clay Nanocomposite Bottles into Acidic Food Simulant. Packag. Technol. Sci. 2013, 27, 161–168. [Google Scholar] [CrossRef]
- Echegoyen, Y.; Rodríguez, S.; Nerín, C. Nanoclay migration from food packaging materials. Food Addit. Contam. Part A 2016, 33, 530–539. [Google Scholar] [CrossRef]
- Jablonski, J.E.; Yu, L.; Malik, S.; Sharma, A.; Bajaj, A.; Balasubramaniam, S.L.; Bleher, R.; Weiner, R.G.; Duncan, T.V. Migration of Quaternary Ammonium Cations from Exfoliated Clay/Low-Density Polyethylene Nanocomposites into Food Simulants. ACS Omega 2019, 4, 13349–13359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.; Zhao, A.; Varughese, E.; Sahle-Demessie, E. Evaluating weathering of food packaging polyethylene-nano-clay composites: Release of nanoparticles and their impacts. NanoImpact 2018, 9, 61–71. [Google Scholar] [CrossRef]
- Velásquez, E.; Garrido, L.; Valenzuela, X.; Galotto, M.J.; Guarda, A.; de Dicastillo, C.L. Physical properties and safety of 100% post-consumer PET bottle -organoclay nanocomposites towards a circular economy. Sustain. Chem. Pharm. 2020, 17, 100285. [Google Scholar] [CrossRef]
- Wunderlich, B. The ATHAS database on heat capacities of polymers. Pure Appl. Chem. 1995, 67, 1019–1026. [Google Scholar] [CrossRef]
- Velásquez, E.; Garrido, L.; Guarda, A.; Galotto, M.; De Dicastillo, C.L. Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays. Appl. Clay Sci. 2019, 180, 105185. [Google Scholar] [CrossRef]
- Vyncke, G.; Fiorio, R.; Cardon, L.; Ragaert, K. The effect of polyethylene on the properties of talc-filled recycled polypropylene. Plast. Rubber Compos. 2020, 1–8. [Google Scholar] [CrossRef]
- Kim, H.; Biswas, J.; Choe, S. Effects of stearic acid coating on zeolite in LDPE, LLDPE, and HDPE composites. Polymer 2006, 47, 3981–3992. [Google Scholar] [CrossRef]
- Curtzwiler, G.W.; Schweitzer, M.; Li, Y.; Jiang, S.; Vorst, K.L. Mixed post-consumer recycled polyolefins as a property tuning material for virgin polypropylene. J. Clean. Prod. 2019, 239, 117978. [Google Scholar] [CrossRef]
- Strömberg, E.; Karlsson, S. The design of a test protocol to model the degradation of polyolefins during recycling and service life. J. Appl. Polym. Sci. 2009, 112, 1835–1844. [Google Scholar] [CrossRef]
- Graziano, A.; Jaffer, S.; Sain, M. Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. J. Elastomers Plast. 2018, 51, 291–336. [Google Scholar] [CrossRef]
- Swain, S.K.; Isayev, A.I. Effect of ultrasound on HDPE/clay nanocomposites: Rheology, structure and properties. Polymer 2007, 48, 281–289. [Google Scholar] [CrossRef]
- Kanagaraj, S.; Varanda, F.R.; Zhil’Tsova, T.V.; Oliveira, M.S.; Simões, J.A. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 2007, 67, 3071–3077. [Google Scholar] [CrossRef]
Sample | 2θ | d (Å) | ||||||
---|---|---|---|---|---|---|---|---|
Clays | a | b | a | b | ||||
OCN | 3.32 | 7.03 | 26.6 | 12.6 | ||||
OCP | 3.68 | - | 24.0 | - | ||||
Film | c | d | e | c | d | e | ||
NC-1OCN | 2.32 | 4.52 | 6.69 | 38.0 | 19.5 | 13.2 | ||
NC-3OCN | 2.49 | 4.67 | 6.74 | 35.4 | 18.9 | 13.1 | ||
NC-5OCN | 2.69 | 5.08 | 7.53 | 32.8 | 17.4 | 11.7 | ||
NC-1OCP | 2.25 | 4.47 | 6.74 | 39.2 | 19.7 | 13.1 | ||
NC-3OCP | 2.35 | 4.59 | 6.76 | 37.5 | 19.2 | 13.1 | ||
NC-5OCP | 2.61 | 4.78 | 6.82 | 33.8 | 18.5 | 12.9 |
Films | First Heating Process | |||||||
Tm1 (°C) | ΔHm1 (J g−1) | Tm2 (°C) | Tm3 (°C) | ΔHm2 (J g−1) | Xc (%) | |||
VPP | - | - | 164.5 ± 1.3 ab | - | 102.1 ± 7.1 c | 49.4 ± 3.4 b | ||
RPP | 124.0 ± 0.3 a | 2.18 ± 0.05c | 165.4 ± 1.7 b | - | 89.6 ± 0.1 a | 43.3 ± 0.1 a | ||
50VPP/50RPP | 123.6 ± 0.7 a | 0.63 ± 0.16 b | 165.6 ± 0.7 b | - | 101.6 ± 1.6 c | 49.2 ± 0.8 b | ||
NC-1OCN | 123.9 ± 0.1 a | 0.63 ± 0.06 b | 165.6 ± 0.4 b | - | 98.5 ± 1.2 bc | 48.1 ± 0.6 b | ||
NC-3OCN | 124.0 ± 0.2 a | 0.60 ± 0.10 ab | 164.6 ± 1.2 ab | 167.6 ± 0.6 a | 97.7 ± 5.5 bc | 48.7 ± 2.7 b | ||
NC-5OCN | 124.5 ± 0.8 a | 0.52 ± 0.19 ab | 163.3 ± 0.2 a | 167.2 ± 0.8 a | 96.9 ± 1.6 abc | 49.3 ± 0.8 b | ||
NC-1OCP | 123.7 ± 0.4 a | 0.48 ± 0.04 ab | 163.8 ± 0.6 ab | 166.9 ± 0.6 a | 100.6 ± 0.7 c | 49.2 ± 0.3 b | ||
NC-3OCP | 124.7 ± 0.1 a | 0.30 ± 0.04 a | 163.9 ± 0.1 ab | 167.6 ± 0.9 a | 95.2 ± 2.5 abc | 47.5 ± 1.2 b | ||
NC-5OCP | 124.4 ± 0.5 a | 0.58 ± 0.18 b | 164.7 ± 0.1 ab | 167.6 ± 0.4 a | 91.6 ± 1.6 ab | 46.7 ± 0.8 ab | ||
Films | Cooling Process | |||||||
Tc1 (°C) | ΔHc1 (J g−1) | Tc2 (°C) | ΔHc2 (J g−1) | |||||
VPP | - | - | 113.6 ± 0.4 a | 129.9 ± 10.5 c | ||||
RPP | 105.6 ± 0.1 a | 1.94 ± 0.01 c | 123.4 ± 0.1 bc | 110.9 ± 1.2 a | ||||
50VPP/50RPP | 105.8 ± 0.1 a | 0.41 ± 0.11 a | 123.7 ± 0.3 c | 122.6 ± 4.6 abc | ||||
NC-1OCN | 105.6 ± 0.2 a | 0.33 ± 0.03 a | 123.1 ± 0.2 bc | 117.0 ± 2.1 ab | ||||
NC-3OCN | 107.3 ± 2.4 a | - | 123.4 ± 0.4 bc | 114.1 ± 9.4 ab | ||||
NC-5OCN | 105.4 ± 0.1 a | 0.32 ± 0.04 a | 122.9 ± 0.4 b | 117.6 ± 1.8 abc | ||||
NC-1OCP | 105.4 ± 0.1 a | 0.56 ± 0.02 b | 123.2 ± 0.0 bc | 125.7 ± 2.5 bc | ||||
NC-3OCP | 105.6 ± 0.2 a | 0.33 ± 0.02 a | 123.0 ± 0.2 b | 114.4 ± 3.7 ab | ||||
NC-5OCP | 105.6 ± 0.2 a | 0.40 ± 0.01 a | 123.0 ± 0.1 b | 111.0 ± 4.2 a |
Samples | Tonset (°C) | Td (°C) | Mass Loss at Td (wt %) |
---|---|---|---|
VPP | 384.5 | 457.1 | 65.6 |
RPP | 374.5 | 454.8 | 65.6 |
50VPP/50RPP | 381.8 | 451.1 | 66.5 |
NC-1OCN | 423.6 | 450.1 | 55.0 |
NC-3OCN | 423.3 | 444.1 | 50.9 |
NC-5OCN | 420.6 | 443.7 | 50.7 |
NC-1OCP | 418.8 | 452.7 | 56.3 |
NC-3OCP | 416.3 | 441.8 | 53.3 |
NC-5OCP | 412.0 | 439.0 | 52.4 |
OCN | 296.4 | 327 and 402 | 27.2 |
OCP | 267.2 | 299 and 404 | 27.1 |
Films | YM (MPa) | TS (MPa) | EB (%) |
---|---|---|---|
VPP | 533± 145 a | 25.5 ± 3.6 a | 72 ± 22 bc |
RPP | 349 ± 71 d | 19.9 ± 2.8 c | 692 ± 28 a |
50VPP/50RPP | 473 ± 123 ab | 23.5 ± 2.1 b | 199 ± 209 b |
NC-1OCN | 530 ± 75 a | 24.0 ± 1.6 ab | 36 ± 15 d |
NC-3OCN | 493 ± 114 ab | 19.3 ± 1.7 cd | 21 ± 6 d |
NC-5OCN | 425 ± 96 bc | 17.1 ± 1.0 e | 24 ± 8 d |
NC-1OCP | 538± 68 a | 22.8 ± 1.6 b | 59 ± 42 cd |
NC-3OCP | 379 ± 96 cd | 17.9 ± 2.0 de | 56 ± 59 cd |
NC-5OCP | 334 ± 69 d | 12.9 ± 1.1 f | 41 ± 18 d |
Food Simulant | Film | Overall Migration (mg dm−2) |
---|---|---|
Fatty | VPP | 6.72 ± 0.49 a |
RPP | 27.19 ± 0.86 e | |
50VPP/50RPP | 19.34 ± 0.15 d | |
NC-1OCN | 17.86 ± 0.14 c | |
NC-1OCP | 16.62 ± 0.11 b | |
Non acid | 50VPP/50RPP | 0.30 ± 0.07 a |
NC-1OCN | 0.42 ± 0.38 a | |
NC-1OCP | 0.66 ± 0.32 a | |
Acid | 50VPP/50RPP | 0.37 ± 0.07 a |
NC-1OCN | 0.46 ± 0.16 a | |
NC-1OCP | 0.56 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, E.; Espinoza, S.; Valenzuela, X.; Garrido, L.; Galotto, M.J.; Guarda, A.; López de Dicastillo, C. Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging. Polymers 2021, 13, 1502. https://doi.org/10.3390/polym13091502
Velásquez E, Espinoza S, Valenzuela X, Garrido L, Galotto MJ, Guarda A, López de Dicastillo C. Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging. Polymers. 2021; 13(9):1502. https://doi.org/10.3390/polym13091502
Chicago/Turabian StyleVelásquez, Eliezer, Sebastián Espinoza, Ximena Valenzuela, Luan Garrido, María José Galotto, Abel Guarda, and Carol López de Dicastillo. 2021. "Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging" Polymers 13, no. 9: 1502. https://doi.org/10.3390/polym13091502
APA StyleVelásquez, E., Espinoza, S., Valenzuela, X., Garrido, L., Galotto, M. J., Guarda, A., & López de Dicastillo, C. (2021). Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging. Polymers, 13(9), 1502. https://doi.org/10.3390/polym13091502