Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Samples
2.3. Characterization Techniques
3. Results and Discussion
3.1. Electrospinning of Polymer/Precursor
3.2. Thermal Treatments
3.3. Characterization of Tin-Oxide
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bracco, P.; Scalarone, D.; Trotta, F. Electrospun Membranes for Sensors Applications. In Smart Membranes and Sensors: Synthesis, Characterization, and Applications; Scrivener Publishing LLC: Beverly, MA, USA, 2014; pp. 301–336. [Google Scholar]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide materials for development of integrated gas sensors—A comprehensive review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Publ. Gr. 2016, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Ai, M. The oxidation activity and acid-base properties of SnO2-based binary catalysts. I. The SnO2V2O5 system. J. Catal. 1975, 40, 318–326. [Google Scholar] [CrossRef]
- Ezhilan, M.; JBB, A.J.; Balaguru Rayappan, J.B. Influence of PVA templates on the synthesis of interconnected and long-winded electrospun V2O5 nanowires—Acetone sensor. Mater. Res. Bull. 2021, 139, 111276. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef]
- Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013, 42, 2746–2762. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560. [Google Scholar] [CrossRef]
- Choi, S.S.; Lee, S.G.; Im, S.; Kim, S.H.; Joo, Y.L. Silica nanofibers from electrospinning/sol-gel process. J. Mater. Sci. Lett. 2003, 22, 891–893. [Google Scholar] [CrossRef]
- Morandi, S.; Cecone, C.; Marchisio, G.; Bracco, P.; Zanetti, M.; Manzoli, M. Shedding light on precursor and thermal treatment effects on the nanostructure of electrospun TiO2 fibers. Nano Struct. Nano Objects 2016, 7, 49–55. [Google Scholar] [CrossRef]
- Chandraiah, M.; Sahoo, B.; Panda, P.K. Preparation and Characterization of SnO2 Nanofibers by Electrospinning. Trans. Indian Ceram. Soc. 2014, 73, 266–269. [Google Scholar] [CrossRef]
- Madhugiri, S.; Sun, B.; Smirniotis, P.G.; Ferraris, J.P.; Balkus, K.J. Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater. 2004, 69, 77–83. [Google Scholar] [CrossRef]
- Bazargan, A.M.; Fateminia, S.M.A.; Ganji, M.E.; Bahrevar, M.A. Electrospinning preparation and characterization of cadmium oxide nanofibers. Chem. Eng. J. 2009, 155, 523–527. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Formo, E.; Sun, Y.; Xia, Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 2011, 22, 326–338. [Google Scholar] [CrossRef]
- Masa, S.; Hontanon, E.; Santos, J.P.; Sayago, I.; Lozano, J. Chemiresistive sensors based on electrospun tin oxide nanofibers for detecting NO2 at the sub-0.1 ppm level. In Proceedings of the 2019 5th Experiment International Conference (exp.at’19), Funchal, Madeira Island, Portugal, 12–14 June 2019; pp. 310–314. [Google Scholar]
- MacDiarmid, A.G.; Jones, W.; Norris, J.D.; Gao, J.; Johnson, A.T.; Pinto, N.J.; Hone, J.; Han, F.K. Electrostatically-generated nano fibers of electronic polymers. Synth. Met. 2001, 119, 27–30. [Google Scholar] [CrossRef]
- Theron, S.A.; Zussman, E.; Yarin, A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030. [Google Scholar] [CrossRef]
- Liu, S.; White, K.L.; Reneker, D.H. Electrospinning Polymer Nanofibers with Controlled Diameters. IEEE Trans. Ind. Appl. 2019, 55, 5239–5243. [Google Scholar] [CrossRef]
- Aliheidari, N.; Aliahmad, N.; Agarwal, M.; Dalir, H. Electrospun nanofibers for label-free sensor applications. Sensors 2019, 19, 587. [Google Scholar] [CrossRef]
- Wang, X.; Fan, H.; Ren, P. Electrospinning derived hollow SnO2 microtubes with highly photocatalytic property. Catal. Commun. 2013, 31, 37–41. [Google Scholar] [CrossRef]
- Sun, X.; Huang, Y.; Zong, M.; Wu, H.; Ding, X. Preparation of porous SnO2/ZnO nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. J. Mater. Sci. Mater. Electron. 2016, 27, 2682–2686. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Du, H.; Li, X.; Wang, C.; Hou, T. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers. J. Alloys Compd. 2021, 868, 159140. [Google Scholar] [CrossRef]
- Seongok, H.; Chongyoup, K.; Dongsook, K. Thermal degradation of poly (ethyleneglycol). Polym. Degrad. Stab. 1995, 47, 203–208. [Google Scholar]
- Holland, B. The thermal degradation of poly(vinyl acetate) measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 2002, 43, 2207–2211. [Google Scholar] [CrossRef]
- Loría-Bastarrachea, M.I.; Herrera-Kao, W.; Cauich-Rodríguez, J.V.; Cervantes-Uc, J.M.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 2011, 104, 737–742. [Google Scholar] [CrossRef]
- Deitzel, J.M.; Kleinmeyer, J.D.; Hirvonen, J.K.; Tan, N.C.B. Controlled deposition of electrospun poly (ethylene oxide) ® bers. Polymer 2001, 42, 8163–8170. [Google Scholar] [CrossRef]
- Landau, O.; Rothschild, A. Fibrous TiO2 gas sensors produced by electrospinning. J. Electroceramics 2015, 35, 148–159. [Google Scholar] [CrossRef]
- Pakravan, M.; Heuzey, M.C.; Ajji, A. A fundamental study of chitosan/PEO electrospinning. Polymer 2011, 52, 4813–4824. [Google Scholar] [CrossRef]
- Fioravanti, A.; Morandi, S.; Rubin Pedrazzo, A.; Bracco, P.; Zanetti, M.; Manzoli, M.; Mazzocchi, M.; Carotta, M.C. Ultrasensitive Gas Sensors Based on Electrospun TiO2 and ZnO. Proceedings 2017, 1, 485. [Google Scholar] [CrossRef]
- Claire, P.D. Sainte Degradation of PEO in the Solid State: A Theoretical Kinetic Model Degradation of PEO in the Solid State: A Theoretical Kinetic Model. Macromolecules 2009, 3469–3482. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.; Grulke, E.A.; Eric, A. Polymer Handbook, 4th ed.; Brandrup, J., Immergut, E.H., Grulke, E.A., Eds.; Wiley: New York, NY, USA, 1999; ISBN 978-0471166283. [Google Scholar]
- Jaypraksh Sharma, H.; Damodhar Sonwane, N.; Baburao Kondawar, S. Electrospun SnO2/Polyaniline Composite Nanofibers Based Low Temperature Hydrogen Gas Sensor. Fibers Polym. 2015, 16, 1527–1532. [Google Scholar] [CrossRef]
- Wu, W.Y.; Ting, J.M.; Huang, P.J. Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection. Nanoscale Res. Lett. 2009, 4, 513–517. [Google Scholar] [CrossRef] [PubMed]
Polymer | POL (wt %) | SnEt (wt %) | DMF (wt %) | SnEt/POL RATIO |
---|---|---|---|---|
Polyvinyl pyrrolidone (PVP) | 15.3 | 11.0 | 73.6 | 40/60 |
Polyethylene oxide (PEO) | 8.7 | 6.1 | 85.2 | 40/60 |
Polyvinyl acetate (PVAc) | 15.4 | 10.8 | 73.9 | 40/60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubin Pedrazzo, A.; Cecone, C.; Morandi, S.; Manzoli, M.; Bracco, P.; Zanetti, M. Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers 2021, 13, 977. https://doi.org/10.3390/polym13060977
Rubin Pedrazzo A, Cecone C, Morandi S, Manzoli M, Bracco P, Zanetti M. Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers. 2021; 13(6):977. https://doi.org/10.3390/polym13060977
Chicago/Turabian StyleRubin Pedrazzo, Alberto, Claudio Cecone, Sara Morandi, Maela Manzoli, Pierangiola Bracco, and Marco Zanetti. 2021. "Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure" Polymers 13, no. 6: 977. https://doi.org/10.3390/polym13060977
APA StyleRubin Pedrazzo, A., Cecone, C., Morandi, S., Manzoli, M., Bracco, P., & Zanetti, M. (2021). Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers, 13(6), 977. https://doi.org/10.3390/polym13060977