Anti-Adhesive Effect of Porous Polylactide Film in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing Porous Film Using Polylactide
2.2. Analysis of the Physicochemical Properties of Film
2.2.1. Investigation of the Thickness, Surface and Internal Pore Shape of Film
2.2.2. Analysis of the Crystal Structures of Film
2.2.3. Melting Temperature Measurement of Film through Thermal Analysis
2.3. Analysis of Adhesion Prevention Effect in an Animal Study
2.4. Visual Observation of Adhesion Severity
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Film
3.1.1. Thickness, Surface, and Internal Pore Shapes of Film
3.1.2. Crystal Structures of Film
3.1.3. Melting Temperature of Film
3.2. Animal Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dy, C.J.; Hernandez-Soria, A.; Ma, Y.; Roberts, T.R.; Daluiski, A. Complications after flexor tendon repair: A systematic review and meta-analysis. J. Hand Surg. 2012, 37, 543–551.e1. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Yu, Z.; You, J.; Zhang, Q. Efficacy and safety of seprafilm for preventing postoperative abdominal adhesion: Systematic review and meta-analysis. World J. Surg. 2007, 31, 2125–2131, discussion 2132. [Google Scholar] [CrossRef] [PubMed]
- Moris, D.; Chakedis, J.; Rahnemai-Azar, A.A.; Wilson, A.; Hennessy, M.M.; Athanasiou, A.; Beal, E.W.; Argyrou, C.; Felekouras, E.; Pawlik, T.M. Postoperative abdominal adhesions: Clinical significance and advances in prevention and management. J. Gastrointest. Surg. 2017, 21, 1713–1722. [Google Scholar] [CrossRef]
- Park, J.S.; Cha, S.J.; Kim, B.G.; Choi, Y.S.; Kwon, G.Y.; Kang, H.; An, S.S. An assessment of the effects of a hyaluronan-based solution on reduction of postsurgical adhesion formation in rats: A comparative study of hyaluronan-based solution and two film barriers. J. Surg. Res. 2011, 168, 49–55. [Google Scholar] [CrossRef]
- Arung, W.; Meurisse, M.; Detry, O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 2011, 17, 4545–4553. [Google Scholar] [CrossRef] [PubMed]
- Ten Broek, R.P.G.; Stommel, M.W.J.; Strik, C.; van Laarhoven, C.J.H.M.; Keus, F.; van Goor, H. Benefits and harms of adhesion barriers for abdominal surgery: A systematic review and meta-analysis. Lancet 2014, 383, 48–59. [Google Scholar] [CrossRef]
- Yeo, Y.; Bellas, E.; Highley, C.B.; Langer, R.; Kohane, D.S. Peritoneal adhesion prevention with an in site cross-linkable hyaluronan gel containing tissue-type plasminogen activator in a rabbit repeated-injury model. Biomaterials 2007, 28, 3704–3713. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Kim, J.K.; Song, K.S.; Noh, S.M.; Ghil, S.H.; Yuk, S.H.; Lee, J.H. Prevention of postsurgical tissue adhesion by anti-inflammatory drug-loaded pluronic mixtures with sol-gel transition behavior. J. Biomed. Mater. Res. Part A 2005, 72, 306–316. [Google Scholar] [CrossRef]
- Jansen, R.P. Failure of peritoneal irrigation with heparin during pelvic operations upon young women to reduce adhesions. Surg. Gynecol. Obstet. 1988, 166, 154–160. [Google Scholar] [PubMed]
- Fei, Z.; Xin, X.; Fei, H.; Yuechong, C. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 244, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiZerega, G.S.; Cortese, S.; Rodgers, K.E.; Block, K.M.; Falcone, S.J.; Juarez, T.G.; Berg, R. A modern biomaterial for adhesion prevention. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.M.N.; Farquhar, C.; Vail, A.; Vandekerckhove, P.; Watson, A.; Wiseman, D.; Vanderkerchove, P. Barrier agents for adhesion prevention after gynaecological surgery. Cochrane Database Syst. Rev. 2008, 16, CD000475. [Google Scholar]
- Vrijland, W.W.; Tseng, L.N.L.; Eijkman, H.J.M.; Hop, W.C.J.; Jakimowicz, J.J.; Leguit, P.; Stassen, L.P.S.; Swank, D.J.; Haverlag, R.; Bonjer, H.J.; et al. Fewer intraperitoneal adhesions with use of hyaluronic acid-carboxymethylcellulose membrane: A randomized clinical trial. Ann Surg. 2002, 235, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, E.; Ozturk, V.; Yazgan, A.; Ozdogan, M.; Gundogdu, H. Effect of polylactic acid film barrier on intra-abdominal adhesion formation. J. Surg. Res. 2008, 147, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Welch, W.C.; Thomas, K.A.; Cornwall, G.B.; Gerszten, P.C.; Toth, J.M.; Nemoto, E.M.; Turner, A.S. Use of polylactide resorbable film as an adhesion barrier. J. Neurosurg. 2002, 97, 413–422. [Google Scholar] [CrossRef]
- Mun, H.S. Method of Manufacturing Porous Film for Anti-Adhesive-Membrane and Slow Emission Materials. South. Korea Patent No. KR101082935B1, 7 November 2011. [Google Scholar]
- Oncel, M.; Remzi, F.H.; Connor, J.; Fazio, V.W. Comparison of cecal abrasion and multiple-abrasion models in generating intra-abdominal adhesions for animal studies. Tech. Coloproctol. 2005, 9, 29–33. [Google Scholar] [CrossRef]
- Diamond, M.P.; Decherney, A.H. Pathogenesis of adhesion formation/reformation: Application to reproductive pelvic surgery. Microsurgery 1987, 8, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.S.; Morgan, R.F.; Rodeheaver, G.T. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery 1995, 117, 663–669. [Google Scholar] [CrossRef]
- Gomel, V.; Urman, B.; Gurgan, T. Pathophysiology of adhesion formation and strategies for prevention. J. Reprod. Med. 1996, 41, 35–41. [Google Scholar]
- Avital, S.; Bollinger, T.J.; Wilkinson, J.D.; Marchetti, F.; Hellinger, M.D.; Sands, L.R. Preventing intra-abdominal adhesions with polylactic acid film: An animal study. Dis. Colon Rectum 2005, 48, 153–157. [Google Scholar] [CrossRef]
- Gruber-Blum, S.; Petter-Puchner, A.H.; Brand, J.; Fortelny, R.H.; Walder, N.; Oehlinger, W.; Koenig, F.; Redl, H. Comparison of three separate antiadhesive barriers for intraperitoneal onlay mesh hernia repair in an experimental model. Br. J. Surg. 2011, 98, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, R.G.; Lontra, M.B.; Scalco, P.; Cavazzola, L.T.; Gurski, R.R. Polylactic acid film versus acellular porcine small intestinal submucosa mesh in peritoneal adhesion formation in rats. Acta Cir. Bras. 2009, 24, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Score | Adhesion Grade |
---|---|
0 | No adhesion |
1 | Filmy adhesions that are easily separable through blunt dissection |
2 | Mild to moderate adhesions with free dissection |
3 | Moderate to severe adhesions with difficult dissection or no dissection |
Number of Rats | Presence of Adhesion (Incidence Rate) | |
---|---|---|
Control | 14 | 13 (92.9%) |
Porous polylactide film | 13 | 3 (23.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.J.; Kim, Y.J.; Kim, T.G.; Lee, J.H.; Kim, Y.-H. Anti-Adhesive Effect of Porous Polylactide Film in Rats. Polymers 2021, 13, 849. https://doi.org/10.3390/polym13060849
Chung KJ, Kim YJ, Kim TG, Lee JH, Kim Y-H. Anti-Adhesive Effect of Porous Polylactide Film in Rats. Polymers. 2021; 13(6):849. https://doi.org/10.3390/polym13060849
Chicago/Turabian StyleChung, Kyu Jin, Youn Jung Kim, Tae Gon Kim, Jun Ho Lee, and Yong-Ha Kim. 2021. "Anti-Adhesive Effect of Porous Polylactide Film in Rats" Polymers 13, no. 6: 849. https://doi.org/10.3390/polym13060849
APA StyleChung, K. J., Kim, Y. J., Kim, T. G., Lee, J. H., & Kim, Y.-H. (2021). Anti-Adhesive Effect of Porous Polylactide Film in Rats. Polymers, 13(6), 849. https://doi.org/10.3390/polym13060849