Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, B.; Chen, D.; Hayward, R.C. Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films. Adv. Mater. 2014, 26, 4381–4385. [Google Scholar] [CrossRef] [PubMed]
- Hayward, R.C.; Chen, D.; Xu, B. Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films. U.S. Patent No. 10,138,542, 27 November 2018. [Google Scholar]
- Wang, C.; Xu, B.B.; Terry, J.G.; Smith, S.; Walton, A.J.; Wang, S.; Lv, H.; Li, Y. Flexible, strain gated logic transducer arrays enabled by initializing surface instability on elastic bilayers. APL Mater. 2019, 7, 031509. [Google Scholar] [CrossRef]
- Lu, H.; Lei, M.; Zhao, C.; Xu, B.; Leng, J.; Fu, Y.Q. Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation. Smart Mater. Struct. 2015, 24, 045015. [Google Scholar] [CrossRef]
- Cao, W.; Liu, C.; Jia, P. Feature Extraction and Classification of Citrus Juice by Using an Enhanced L-KSVD on Data Obtained from Electronic Nose. Sensors 2019, 19, 916. [Google Scholar] [CrossRef]
- Zhao, W.; Belhaire, E.; Chappert, C.; Mazoyer, P. Power and area optimization for run-time reconfiguration system on programmable chip based on magnetic random access memory. IEEE Trans. Magn. 2009, 45, 776–780. [Google Scholar] [CrossRef]
- Wang, W. Magnetic random accessible memory based magnetic content addressable memory cell design. IEEE Trans. Magn. 2010, 46, 1967–1970. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, Y.; Suh, D.S.; Lee, E.H.; Seo, S.; Kim, D.C.; Jung, R.; Kang, B.S.; Ahn, S.E.; Lee, C.B.; et al. Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 2007, 19, 3919–3923. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Wu, C.-Y.; Wu, C.-Y.; Lee, T.-C.; Yang, F.-L.; Hu, C.; Tseng, T.-Y. Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices. IEEE Electron Device Lett. 2007, 28, 366–368. [Google Scholar] [CrossRef]
- Ambrosi, E.; Bricalli, A.; Laudato, M.; Ielmini, D. Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices. Faraday Discuss. 2019, 213, 87–98. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chang, Y.P.; Ho, C.-C.; Shen, Y.-S.; Chiou, B.-S. Effect of Top Electrode Materials on the Nonvolatile Resistive Switching Characteristics of CCTO Films. IEEE Trans. Magn. 2011, 47, 633–636. [Google Scholar] [CrossRef]
- Ke, J.-J.; Wei, T.-C.; Tsai, D.-S.; Lin, C.-H.; He, J.-H. Surface effects of electrode-dependent switching behavior of resistive random-access memory. Appl. Phys. Lett. 2016, 109, 131603. [Google Scholar] [CrossRef]
- Si, W.; Lei, W.; Han, Z.; Zhang, Y.; Hao, Q.; Xia, M. Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene ox- ide composites. Sensors Actuators B Chem. 2014, 193, 823–829. [Google Scholar] [CrossRef]
- Chua, C.K.; Ambrosi, A.; Pumera, M. Graphene oxide reduction by standard industrial reducing agent: Thiourea dioxide. J. Mater. Chem. 2012, 22, 11054. [Google Scholar] [CrossRef]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jian, J.C.; Hsu, Y.L.; Huang, W.Y.; Young, S.J. A Green Strategy for Developing a Self-Healing Gelatin Resistive Memory Device. ACS Appl. Polym. Mater. 2020, 11, 5318–5326. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lee, C.J.; Wang, L.W.; Wang, Y.H. Highly Uniform Resistive Switching Properties of Solution-Processed Silver-Embedded Gelatin Thin Film. Small 2018, 13, 1703888. [Google Scholar] [CrossRef]
- Hwang, Y.H.; An, H.M.; Cho, W.J. Performance Improvement of the Resistive Memory Properties of InGaZnO Thin Films by Using Microwave Irradiation. Jpn. J. Appl. Phys. 2014, 53, 04EJ04. [Google Scholar] [CrossRef]
- Aburtoa, J.; Morana, M.; Galanob, A.; Torres-Garcíaa, E. Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. J. Anal. Appl. Pyrolysis 2015, 112, 94–104. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, H.D.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lampert, M.A. Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rev. 1956, 103, 1648–1656. [Google Scholar] [CrossRef]
- Yang, Y.C.; Pan, F.; Zeng, F.; Liu, M. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization. J. Appl. Phys. 2009, 106, 123705. [Google Scholar] [CrossRef]
- Shi, T.; Yang, R.; Guo, X. Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ion. 2016, 296, 114–119. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Liu, J.; Hu, Z.; Wang, Q.; Zhang, Y.; Wei, M.; Hu, C. Resistive switching behavior in Pt/YSZ/Nb:SrTiO3 heterostructure for nonvolatile multilevel memories. J. Alloy. Compd. 2014, 612, 30–33. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Zhou, H.; Hu, Z.; Liu, X.; Liao, H. Improved bipolar resistive switching properties in CeO2/ZnO stacked hetero-structures. Semicond. Sci. Technol. 2013, 28, 015023. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Zhou, H.; Hu, Z.; Liu, X.; Fang, X.; Sebo, B.; Fang, G.; Zhao, X. Nonvolatile bipolar resistive switching in an Ag/TiO2/Nb: SrTiO3/In device. J. Phys. D Appl. Phys. 2012, 45, 375303. [Google Scholar] [CrossRef]
- Wang, Z.S.; Zeng, F.; Yang, J.; Chen, C.; Yang, Y.C.; Pan, F. Reproducible and Controllable Organic Resistive Memory Based on Al/Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate)/Al Structure. Appl. Phys. Lett. 2010, 97, 253301. [Google Scholar] [CrossRef]
- Chang, Y.C.; Xue, R.Y.; Wang, Y.H. Multilayered Barium Titanate Thin Films by Sol-Gel Method for Nonvolatile Memory Application. Ieee Trans. Electron Devices 2014, 61, 4090–4097. [Google Scholar] [CrossRef]
- Chang, Y.C.; Wang, Y.H. Resistive Switching Behavior in Gelatin Thin Films for Nonvolatile Memory Application. ACS Appl. Mater. Interfaces 2014, 6, 5413–5421. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.C.; Hou, T.H.; Lin, K.L.; Lee, Y.J.; Lei, T.F. Reversible Transition of Resistive Switching Induced by Oxygen-Vacancy and Metal Filaments in HfO2. Solid-State Electron. 2013, 89, 167–170. [Google Scholar] [CrossRef]
- Kumari, N.; Pandey, M.; Hamada, K.; Hirotani, D.; Nagamatsu, S.; Hayase, S.; Pandey, S.S. Role of Device Architecture and AlOx Interlayer in Organic Schottky Diodes and Their Interpretation by Analytical Modeling. J. Appl. Phys. 2019, 126, 125501. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jian, J.C.; Chuang, M.Y.; Hsu, Y.L.; Huang, W.Y.; Young, S.J. Metal and Carbon Filaments in Bio-memory Device through Controlled the Al/Apple Pectin Interface. ACS Appl. Electron. Mater. 2020, 2, 2798–2805. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jian, J.C.; Hsu, Y.L.; Huang, W.Y.; Chen, Z.C.; Liu, K.M. “Repeatable room-temperature self-healing memory device based on gelatin films. Flex. Print. Electron. 2020, 5, 045005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-W.; Wang, T.-Y.; Chang, Y.-C. Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films. Polymers 2021, 13, 710. https://doi.org/10.3390/polym13050710
Lin K-W, Wang T-Y, Chang Y-C. Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films. Polymers. 2021; 13(5):710. https://doi.org/10.3390/polym13050710
Chicago/Turabian StyleLin, Kai-Wen, Ting-Yun Wang, and Yu-Chi Chang. 2021. "Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films" Polymers 13, no. 5: 710. https://doi.org/10.3390/polym13050710
APA StyleLin, K.-W., Wang, T.-Y., & Chang, Y.-C. (2021). Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films. Polymers, 13(5), 710. https://doi.org/10.3390/polym13050710