Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement
Abstract
:1. Introduction
2. Materials Manufacturing and Measurements
2.1. Materials and Manufacturing Techniques
2.2. Measurements
3. Results and Discussion
3.1. Thermoset- vs. Thermoplastic-Based Composites
3.2. Thermoplastics Treated by Autoclave after ATP Manufacturing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gürdal, Z.; Haftaka, R.T.; Hajela, P. Design and Optimization of Laminated Composite Materials; John Wiley & Sons, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Rajak, D.P.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legrand, X.; Cochrane, C.; Koncar, V. A Complex Shaped-Reinforced Thermoplastic Composite Part Made of Commingled Yarns with an Integrated Sensor. In Smart Textiles and their Applications; Koncar, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 353–374. [Google Scholar]
- Rubino, F.; Nistico, A.; Tucci, F.; Carlone, P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Wang, S.; Wang, S.; Li, G.; Wang, P.; Liang, C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites. Polymers 2019, 11, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakeman, M.D.; Mason, J.A.E. Composites Manufacturing—Thermoplastics. In Design and Manufacture of Textile Composites; Long, A., Ed.; Elsevie: Amsterdam, The Netherlands, 2005; pp. 197–241. [Google Scholar]
- Maurer, D.; Mitschang, P. Laser-Powered Tape Placement Process—Simulation and Optimization. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 129–137. [Google Scholar]
- Hou, W.; Zhang, W. Advanced Composite Materials Defects/Damages and Health Monitoring. In Proceedings of the Prognostics & System Health Management Conference (PHM-2012 Beijing), Beijing, China, 23–25 May 2012. [Google Scholar]
- Antin, K.; Laukkanen, A.; Andersson, T.; Smyl, D.; Vilaca, P. A Multiscale Modelling Approach for Estimating the Effect of Defects in Unidirectional Carbon Fiber Reinforced Polymer Composites. Materials 2019, 12, 1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muramatsu, M.; Nakasumi, S.; Harada, Y. Characterization of Defects in Carbon Fiber-Reinforced Plastics by Inverse Heat Conduction Analysis Using Transfer Matrix Between Layers. Adv. Compos. Mater. 2016, 25, 541–555. [Google Scholar] [CrossRef]
- Potter, K.; Khan, B.; Wisnom, M.; Bell, T.; Stevens, J. Variability, Fibre Waviness and Misalignment in the Determination of the Properties of Composite Materials and Structures. Compos. Part A 2008, 39, 1343–1354. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in Fiber-Reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Ouarhim, W.; Zari, N.; Bouhfid, R.; Qaiss, A. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–60. [Google Scholar]
- Meola, C.; Toscano, C. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs). Materials 2014, 7, 1483–1501. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, B.M.; Wang, D.F.; Wu, Z.J. Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates. Compos. Struct. 2006, 73, 303–309. [Google Scholar] [CrossRef]
- Kuriyama, T.; Mizoguchi, M.; Ogawa, T. Effect of Injection Speed on Internal Structure and Mechanical Properties in Short Glass Fibre Reinforced Polyamide Injection Mouldings. Polym. Polym. Compos. 2004, 12, 423–431. [Google Scholar] [CrossRef]
- Mouritz, A.P. Review of Z-Pinned Composite Laminates. Compos. Part A 2007, 12, 2383–2397. [Google Scholar]
- Greenhalgh, E.S. Failure Analysis and Fractography of Polymer Composites; Woodhead Publishing Limited: Cambridge, UK, 2009. [Google Scholar]
- Stickler, P.B.; Ramulu, M. Investigation of Mechanical Behaviour of Transverse Stitched T-Joints with PR520 Resin in Flexure and Tension. Compos. Struct. 2001, 52, 307–314. [Google Scholar] [CrossRef]
- Ghayoor, H.; Marsden, C.C.; Hoa, S.V.; Melro, A.R. Numerical Analysis of Resin-Rich Areas and their Effects on Failure Initiation of Composites. Compos. Part A 2019, 117, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Nimbal, S.S.; Banker, M.M.; Roopa, A.; Varughese, B.; Sundaram, R. Effect of Gap Induced Waviness on Compressive Strength of Laminated Composites. Mater. Today Proc. 2016, 4, 8355–8369. [Google Scholar] [CrossRef]
- Christian, W.J.R.; DiazDelaO, F.A.; Atherton, K.; Patterson, E.A. An Experimental Study on the Manufacture and Characterization of In-Plane Fibre-Waviness Defects in Composites. R. Soc. Open Sci. 2018, 5, 180082. [Google Scholar] [CrossRef] [Green Version]
- Fedulov, B.N.; Antonov, F.K.; Safonov, A.A.; Ushakov, A.E.; Lomov, S.V. Influence of Fibre Misalignment and Voids on Composite Laminate Strength. J. Compos. Mater. 2015, 49, 2887–2896. [Google Scholar] [CrossRef]
- Wilhelmsson, D.; Gutkin, R.; Edgren, F.; Asp, L.E. An Experimental Study of Fibre Waviness and its Effects on Compressive Properties of Unidirectional NCF Composites. Compos. Part A 2018, 107, 665–674. [Google Scholar] [CrossRef]
- Pain, D.; Drinkwater, B.W. Detection of Fibre Waviness Using Ultrasonic Array Scattering Data. J. Nondestruct. Eval. 2013, 32, 215–227. [Google Scholar] [CrossRef]
- Clarke, A.R.; Archenhold, G.; Davidson, N.C. A Novel Technique for Determining the 3D Spatial Distribution of Glass Fibres in Polymer Composites. Compos. Sci. Technol. 1995, 55, 75–91. [Google Scholar] [CrossRef]
- Kratmann, K.K.; Sutcliffe, M.P.F.; Lilleheden, L.T.; Pyrz, R.; Thomsen, O.T. A Novel Image Analysis Procedure for Measuring Fibre Misalignment in Unidirectional Fibre Composites. Compos. Sci. Technol. 2009, 69, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Sebaey, T.A.; Catalanotti, G.; O’Dowd, N. An Integrated Approach to Measure and Model Fibre Misalignment in Carbon/Epoxy Composites. Compos. Sci. Technol. 2019, 183. [Google Scholar] [CrossRef]
- Han, Z.; Sun, S.; Li, W.; Zhao, Y.; Shao, Z. Experimental Study of the Effect of Internal Defects on Stress Waves During Automated Fiber Placement. Polymers 2018, 10, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suprem. Product Data Sheet 10037, Suprem T60% AS4/PA12-2159; Technical Report; Suprem: Yverdon-les-Bains, Switzerland, 2009. [Google Scholar]
- Suprem. Product Destination Sheet 10192, Suprem T60%IM7/PEEK 150; Technical Report; Suprem: Yverdon-les-Bains, Switzerland, 2014. [Google Scholar]
- Hexcel. HexPly 8552 Epoxy Matrix (180 °C/356 °F Curing Matrix) Product Data Sheet; Technical Report; Hexcel Corporation: Stamford, CT, USA, 2016. [Google Scholar]
- Comer, A.J.; Ray, D.; Obande, W.O.; Jones, D.; Lyons, J.; Rosca, I.; O’Higgins, R.M.; McCarthy, M.A. Mechanical Characterisation of Carbon Fibre/PEEK Manufactured by Laser-Assisted Automated-Tape-Placement and Autoclave. Compos. Part A 2015, 69, 10–20. [Google Scholar] [CrossRef]
- Ray, D.; Comer, A.J.; Lyons, J.; Obande, W.; Jones, D.; O’Higgins, R.M.; McCarthy, M.A. Fracture Toughness of Carbon Fiber/Polyether Ether Ketone Composites Manufactured by Autoclave and Laser-Assisted Automated Tape Placement. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Clancy, G.; Peeters, D.; Oliveri, V.; Jones, D.; O’Higgins, R.M.; Weaver, P.M. A Study of the Influence of Processing Parameters on Steering of Carbon Fibre/PEEK Tapes Using Laser-Assisted Tape Placement. Compos. Part B 2019, 163, 243–251. [Google Scholar] [CrossRef]
- Grouve, W.A.; Warnet, L.L.; Rietman, B.; Visser, R.A.; Akkerman, R. Optimization of the Tape Placement Process Parameters for Carbon/PPS Composites. Compos. Part A 2013, 50, 44–53. [Google Scholar] [CrossRef]
- Rao, P.S.; Hardiman, M.; O’Dowd, N.; Sebaey, T.A. Comparison of Progressive Damage between Thermoset and Thermoplastic CFRP Composites under In-Situ Tensile Loading. J. Compos. Mater. 2020. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. IMAGEJ2: ImageJ for the Next Generation of Scientific Image Data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Van Doorn, E.; Dhruva, B.; Sreenivasan, K.R.; Cassella, V. Statistics of Wind Directions and its Increments. Phys. Fluids 2000, 12, 1529–1534. [Google Scholar] [CrossRef] [Green Version]
- Berens, P. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. 2009, 31, 1–21. [Google Scholar] [CrossRef] [Green Version]
- ASTM-D3529. Standard Test Methods for Constituent Content of Composite Prepreg; Astm International, American Society for Testing and Materials: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM-D3171. Standard Test Methods for Constituent Content of Composite Materials; Astm International, American Society for Testing and Materials: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Mehdikhani, M.; Petrov, N.A.; Straumit, I.; Melro, A.R.; Lomov, S.V.; Gorbatikh, L. The Effect of Voids on Matrix Cracking in Composite Laminates as Revealed by Combined Computations at the Micro- and Meso-Scales. Compos. Part A 2019, 117, 180–192. [Google Scholar] [CrossRef] [Green Version]
Material | Fibre Volume Fraction | Ply Thickness | Density | Tape/Prepreg Width |
---|---|---|---|---|
% | mm | g/cm | mm | |
IM7/PEEK | 60.0 | 0.14 | 1.588 | 12 |
AS4/PA12 | 60.0 | 0.133 | 1.48 | 12 |
IM7/8552 | 60.0 | 0.131 | 1.57 | 400 |
Property | PEEK | PA12 | 8552 Epoxy Resin |
---|---|---|---|
Trade name | VICTREX PEEK 150UF10 | VESTOSINT 2159 | HexPly 8552 |
Supplier | Suprem | Suprem | Hexcel |
Melting point (C) | 343 | 184 | — |
Glass transition (C) | 143 | 49 | 200 |
Density (g/cm) | 1.30 | 1.02 | 1.30 |
Tensile strength (MPa) | 100 | 73 | 121 |
Tensile Modulus (GPa) | 4.00 | 1.96 | 4.67 |
Lay-Down Speed | Target Temperature | Roller Material | Pressure |
---|---|---|---|
12 m/min | 420 C for IM7/PEEK | Silicone | 1.2 Bar |
210 C for AS4/PA12 |
Property | IM7/PEEK | AS4/PA12 | IM7/8552 |
---|---|---|---|
Void contents (%) | 5.1 | 5.1 | 0.0 |
Fibre volume fraction (%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebaey, T.A.; Bouhrara, M.; O’Dowd, N. Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers 2021, 13, 473. https://doi.org/10.3390/polym13030473
Sebaey TA, Bouhrara M, O’Dowd N. Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers. 2021; 13(3):473. https://doi.org/10.3390/polym13030473
Chicago/Turabian StyleSebaey, Tamer A., Mohamed Bouhrara, and Noel O’Dowd. 2021. "Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement" Polymers 13, no. 3: 473. https://doi.org/10.3390/polym13030473
APA StyleSebaey, T. A., Bouhrara, M., & O’Dowd, N. (2021). Fibre Alignment and Void Assessment in Thermoplastic Carbon Fibre Reinforced Polymers Manufactured by Automated Tape Placement. Polymers, 13(3), 473. https://doi.org/10.3390/polym13030473