The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kucharski, Z.; Rolski, D. Clinical application of resilient materials for relining of dentures. Prot. Stomatol. 2011, 3, 234–240. [Google Scholar]
- Santawisuk, W.; Kanchanavasita, W.; Sirisinha, C.; Harnirattisai, C. Mechanical properties of experimental silicone soft lining materials. Dent. Mater. J. 2013, 32, 970–975. [Google Scholar] [CrossRef]
- Kucharski, Z. Rebasing of removable dentures with use of resilient materials: Causes of failures. Prot. Stomatol. 2012, 1, 38–43. [Google Scholar] [CrossRef]
- Kucharski, Z. Physical properties of resilient materials in prosthodontics. Prot. Stomatol. 2008, 3, 209–216. [Google Scholar]
- Murata, H.; Hamada, T.; Sadamori, S. Relationship between viscoelastic properties of soft denture liners and clinical efficacy. Jpn. Dent. Sci. Rev. 2008, 44, 128–132. [Google Scholar] [CrossRef]
- Garcia, L.T.; Jones, J.D. Soft liners. Dent. Clin. N. Am. 2004, 48, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Bail, M.; Jorge, J.H.; Urban, V.M.; Campanha, N.H. Surface roughness of acrylic and silicone-based soft liners: In vivo study in a rat model. J. Prosthodont. 2014, 23, 126–151. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Yang, H.S.; Chun, M.G.; Park, Y.J. Shore hardness and tensile bond strength of long-term soft denture lining materials. J. Prosthet. Dent. 2014, 112, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Taguchi, N.; Hamada, T.; Mccabe, J.F. Dynamic viscoelastic properties and the age changes of long-term soft denture liners. Biomaterials 2000, 21, 1421–1427. [Google Scholar] [CrossRef]
- El-Hadary, A.; Drummond, J.L. Comparative study of water sorption, solubility, and tensile bond strength of two lining materials. J. Prosthet. Dent. 2000, 83, 356–361. [Google Scholar] [CrossRef]
- Gawlak, D.; Mańka-Malara, K.; Zelik, D.; Łojszczyk, R. Denture relining using the high-temperature injection technique. A case report. Protet. Stomatol. 2014, 2, 128–133. [Google Scholar] [CrossRef]
- Kochanek-Karpińska, M.; Karpiński, A. Miękkie podścielenie dolnej protezy całkowitej. Dental Labor 2012, 1, 94–98. [Google Scholar]
- Gawlak, D.; Łuniewska, J.; Stojak, W.; Hovhannisyan, A.; Stróżyńska, A.; Mańka-Malara, K.; Adamiec, M.; Rysz, A. The prevalence of orodental trauma during epileptic seizures in terms of dental treatment—survey study. Neurol. Neurochir. Pol. 2017, 51, 361–365. [Google Scholar] [CrossRef]
- Mierzwińska-Nastalska, E.; Rusiniak-Kubik, K.; Gontek, R.; Okoński, P. The influence of denture hygiene on the oral candidiasis. Nowa. Stom. 2000, 14, 52–55. [Google Scholar]
- Glass, R.; Bullard, J.; Conrad, R. The contamination of protective mouthguards: A characterization of the microbiota found in football players’ protective mouthguards as compared to oral microbiota found in first-year medical students. Amer. Dent. Inst. For Con. Educ. J. 2006, 93, 23–28. [Google Scholar]
- Glass, R.; Bullard, J.; Goodson, L.; Conrad, R. Microbial contamination of protective mouth-guards in hockey players: An in vivo study. Compend. Cont. Educ. Dent. 2001, 22, 1093–1108. [Google Scholar]
- Kang, S.H.; Lee, H.J.; Hong, S.H.; Kim, K.H.; Kwon, T.Y. Influence of surface characteristics on the adhesion of Candida albicans to various denture lining materials. Acta Odontol. Scand. 2013, 71, 241–248. [Google Scholar] [CrossRef]
- Vural, C.; Ozdemir, G.; Kurtulmus, H.; Kumbuloglu, O.; Ozcan, M. Comparative effects of two different artificial body fluids on Candida albicans adhesion to soft lining materials. Dent. Mat. J. 2010, 29, 206–212. [Google Scholar] [CrossRef][Green Version]
- Pires, F.R.; Santos, E.B.; Boban, P.R.; De Almeida, O.P.; Lopes, M.A. Denture stomatitis and salivary Candida in Brazilian edentulous patients. J. Oral Rehabil. 2002, 29, 1115–1119. [Google Scholar] [CrossRef]
- Verran, J.; Maryan, C.J. Retention of Candida albicans on acrylic resin and silicone of different surface topography. J. Prosthet. Dent. 1997, 77, 535–539. [Google Scholar] [CrossRef]
- Bulad, K.; Taylor, R.L.; Verran, J.; McCord, J.F. Colonization and penetration of denture soft lining materials by Candida albicans. Dent. Mater. 2004, 20, 167–175. [Google Scholar] [CrossRef]
- Valentini, F.; Souza Luz, M.; Boscato, N.; Pereira-Cenci, T. Biofilm formation on denture liners in randomised controlled in situ trial. J. Dent. 2013, 41, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Kreve, S.; Oliveira, V.C.; Bachmann, L.; Alves, O.L.; Dos Reis, A.C. Influence of AgNO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of soft denture liner. Sci. Rep. 2019, 11889. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Gu, J.T.; Zare, E.N.; Ashtari, B.; Moeini, A.; Tay, F.R.; Niu, L.N. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater. 2020, 101, 69–101. [Google Scholar] [CrossRef]
- Cierech, M.; Szerszeń, M.; Wojnarowicz, J.; Łojkowski, W.; Kostrzewa-Janicka, J.; Mierzwińska-Nastalska, E. Preparation and Characterysation of Poly(methyl metacrylate)-Titanium Dioxide Nanocomposites for Denture Bases. Polymers 2020, 12, 2655. [Google Scholar] [CrossRef] [PubMed]
- Mańka-Malara, K.; Panasiewicz, A.; PKacprzyk, M.; Gawryszewska, M.; Mierzwińska-Nastalska, E.; Gawlak, D. The effect of decontamination procedures on elastic polymeric materials used in dental mouthguards fabrication. Acta Bioeng. Biomech. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Bal, B.T.; Yavuzyilmaz, H.; Yücel, M. A pilot study to evaluate the adhesion of oral microorganisms to temporary soft lining materials. J. Oral Sci. 2008, 50, 1–8. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mancuso, D.N.; Goiato, M.C.; Zuccollotti, B.C.; Moreno, A.; dos Santos, D.M.; Pesqueira, A.A. Effect of thermocycling on hardness absorption, solubility and colour change of soft liners. Gerodontology 2012, 29, 215–219. [Google Scholar] [CrossRef]
- Bangera, M.K.; Kotian, R.; Ravishankar, N. Effect of titanium dioxide nanoparticle reinforcement on flexural strength of denture base resin. Jpn. Dent. Sci. Rev. 2020, 56, 68–76. [Google Scholar] [CrossRef]
- Mahboub, F.; Salehsaber, F.; Parnia, F.; Gharekhani, V.; Kananizadeh, Y.; Taghizadeh, M. Effect of denture cleansing agents on tensile and shear bond strengths of soft liners to acrylic denture base. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 183–188. [Google Scholar] [CrossRef][Green Version]
- Farzin, M.; Bahrani, F.; Adelpour, E. Comparison of the effect of two denture cleaners on tensile bond strength of a denture liner. J. Dent. Shiraz. Univ. Med. Sci. 2013, 14, 130–135. [Google Scholar]
- Oliveira, L.V.; Mesquita, M.F.; Henriques, G.E.P.; Consani, R.L.X.; Fragoso, W.S. The compatibility of denture cleansers and resilient liners. J. Appl. Oral Sci. 2006, 14, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.S.; Singh, S.; Hari, P.A.; Amarnath, G.S.; Kundapur, V.; Pasha, N.; Anand, M. Evaluate the effect of commertially available denture cleaners on surface hardness and roughness of denture liners at various time intervals. Int. J. Biomed. Sci. 2016, 12, 130–142. [Google Scholar]
- Pahuja, R.K.; Garg, S.; Bansal, S.; Dang, R.H. Effect of denture cleaners on surface hardness of resilient denture liners at various time intervals—an in vitro study. J. Adv. Prosthodont. 2013, 5, 270–277. [Google Scholar] [CrossRef]
- Huh, J.B.; Lim, Y.; Youn, H.I.; Chang, B.M.; Lee, J.; Shin, S.W. Effect of denture cleansers on Candida albicans biofilm formation over resilient liners. J. Adv. Prosthodont. 2014, 6, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.P.C.; Senna, P.M.; da Silva, W.J.; Del Bel Cury, A.A. Long-term efficacy of denture cleansers in preventing Candida spp. biofilm recolonization on liner surface. Braz. Oral Res. 2010, 24, 342–348. [Google Scholar] [CrossRef]
- Badaró, M.M.; Leite-Fernandes, V.M.F.; Martin, L.T.; Oliveira, V.C.; Watanabe, E.; Paranhos, H.F.; Silva-Lovato, C.H. Antibiofilm activity of an experimental Rinus Communis Dentifrice on soft denture liners. Braz. Dent. J. 2019, 30, 252–258. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Changes in properties of short-term-use soft liners after thermocycling. J. Oral Rehabil. 2004, 31, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Arioli Filho, J.N.; Dos Santos, P.H.; Nogueira, S.S.; Batista, A.U. Effect of disinfection treatments on the hardness of soft denture liner materials. J. Prosthodont. 2007, 16, 101–106. [Google Scholar] [CrossRef]
- Mancuso, D.N.; Goiato, M.C.; Zuccolotti, B.C.R.; Moreno, A.; dos Santos, D.M. Evaluation of hardness and color change of soft liners after accelerated ageing. Prim. Dent. Care 2009, 16, 127–130. [Google Scholar] [CrossRef]
- Machado, A.L.; Breeding, L.C.; Vergani, C.E.; da Cruz Perez, L.E. Hardness and surface roughness of reline and denture base acrylic resins after repeated disinfection procedures. J. Prosthetic. Dent. 2009, 102, 115–122. [Google Scholar] [CrossRef]
- Basavarajappa, S.; Al-Kheraif, A.A.; ElSharawy, M.; Vallittu, P.K. Effect of solvent/disinfectant ethanol on the micro-surface structure and properties of multiphase denture polymers. J. Mech. Behav. Biomed. Mater. 2015, 54, 1–7. [Google Scholar] [CrossRef]
- Asad, T.; Watkinson, A.C.; Huggett, R. The effect of disinfecting procedures on flexural properties of denture base acrylics. J. Prosthetic. Dent. 1992, 68, 191–195. [Google Scholar] [CrossRef]
- Da Silva, S.C.; Kimpara, E.T.; Mancini, M.N.G.; Balducci, I.; Jorge, A.O.C.; Koga-Ito, C.E. Effectiveness of six different disinfectants on removing five microbial species and effects on the topographic characteristics of acrylic resin. J. Prosthodont. 2008, 17, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Orsi, I.A.; Andrade, V.G.; Bonato, P.S.; Raimundo, L.B.; Herzog, D.S.; Borie, E. Glutaraldehyde release from heat-polymerized acrylic resins after disinfection and chemical and mechanical polishing. Braz. Dent. J. 2011, 22, 490–496. [Google Scholar] [CrossRef]
- Raszewski, Z.; Nowakowska, D.; Więckiewicz, M.; Nowakowska-Toporowska, A. The effect of chlorhexidine disinfectant gels with anti-discoloration systems on color and mechanical properties of PMMA resin for dental application. Polymers 2021, 13, 1800. [Google Scholar] [CrossRef]
- Walczak, K.; Thiele, J.; Geisler, D.; Boening, K.; Wieckiewicz, M. Effect of chemical disinfection on chitosan coated PMMA and PETG surfaces -an in vitro study. Polymers 2018, 10, 536. [Google Scholar] [CrossRef]
- Pachava, K.R.; Nadendla, L.K.; Alluri, L.S.C.; Tahseen, H.; Sajja, N.P. Invitro antifungal evaluation of denture soft liner incorporated with tea tree oil: A new therapeutic approach towards denture stomatitis. J. Clin. Diagn. Res. 2015, 9, 62–64. [Google Scholar] [CrossRef]
- Bueno, M.G.; Sousa, E.J.B.; Hotta, J.; Porto, V.C.; Urban, V.M.; Neppelenbroek, K.H. Surface properties of temporary soft liners modified by minimum inhibitory concetrations of antifungals. Braz. Dent. J. 2017, 28, 158–164. [Google Scholar] [CrossRef]
- Kumar, S.M.; Kumar, V.A.; Natarajan, P.; Sreenivasan, G. Antifungal efficacy and the mechanical properties of soft liners against Candida albicans after the incorpotion of garlic and neem: An in vitro study. J. Int. Soc. Prevent. Communit. Dent. 2018, 8, 212–217. [Google Scholar] [CrossRef]
- Albrecht, N.; Da Silva Fidalgo, T.K.; De Alencar, M.J.S.; Maia, L.C.; Urban, V.M.; Neppelenbroek, K.H.; Reis, K.R. Peel bond strength and antifungal activity of two soft denture lining materials incorporated with 1% chlorhexidine diacetate. Dent. Mat. J. 2018, 37, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Madan, N.; Datta, K. Evaluation of tensile bond strength of heat cure and autopolymerizing silicone-based resilient denture liners before and after thermocycling. Indian J. Dent. Res. 2012, 23, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Salloum, A.M. Effect of aging on bond strength of two soft lining materials to a denture polymer. J. Indian Prosthodont. Soc. 2014, 14, 155–160. [Google Scholar] [CrossRef]
- Mutluay, M.M.; Tezvergil-Mutluay, A. The influence of cyclic stress on surface properties of sort liners. Odontology 2017, 105, 214–221. [Google Scholar] [CrossRef]
- Gawlak, D.; Mańka-Malara, K.; Mierzwińska-Nastalska, E.; Waśniewski, B.; Ryszkowska, J. Comparison of hardness, energy absorption and water absorbability of polymeric materials used in the manufacture of mouthguards. Dent. Med. Probl. 2015, 52, 78–85. [Google Scholar]
- Gawlak, D.; Mańka-Malara, K.; Kamiński, T. Assessment of the usage of custom mouthguards prepared using pressure injection—preliminary examination. Dent. Med. Probl. 2014, 51, 218–224. [Google Scholar]
- Mańka-Malara, K.; Gawlak, D. The comparison of mouthguards used in combat sports. Dent. Med. Probl. 2013, 50, 205–209. [Google Scholar]
Mollosil Plus | 1 Toothbrush 15 min (n = 4) | 2 Toothbrush + Soap 15 min (n = 4) | 3 Toothbrush + Blendamed 15 min (n = 4) | 4 Toothbrush + Protefix Paste 15 min (n = 4) | 5 Protefix Tablets 15 min (n = 4) | 6 Aftermat 15 min (n = 4) | p |
---|---|---|---|---|---|---|---|
Small separating pieces, n (%) | 2 (50.0) | 3 (75.0) | 4 (100.0) | 3 (75.0) | 2 (50.0) | 4 (100.0) | 0.377 |
Big separating pieces, n (%) | 1 (25.0) | 0 (0.0) | 2 (50.0) | 4 (100.0) | 2 (50.0) | 3 (75.0) | 0.075 |
Precipitate, n (%) | 0 (0.0) | 0 (0.0) | 4 (100.0) | 2 (50.0) | 4 (100.0) | 4 (100.0) | 0.001 |
Grooves, n (%) | 2 (50.0) | 3 (75.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.020 |
Holes, n (%) | 1 (25.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (25.0) | 0.498 |
Sum, mean ± SD | 1.5 ± 1.0 | 1.5 ± 0.6 | 2.5 ± 0.6 | 2.3 ± 0.5 | 2.0 ± 0.0 | 3.0 ± 0.8 | 0.031 p 1,3 = 0.045 p1,6 = 0.005 p2,3 = 0.045 p2,6 = 0.005 p5,6 = 0.045 |
Decontamination Method. | 1 min (mean ± SD) | 5 min (mean ± SD) | 10 min (mean ± SD) | 15 min (mean ± SD) | p |
---|---|---|---|---|---|
Toothbrush | 0.25 ± 0.5 | 1.25 ± 0.5 | 1.0 ± 0.8 | 1.5 ± 1.0 | 0.147 |
Toothbrush + soap | 1.75 ± 0.5 | 1.25 ± 1.3 | 0.75 ± 1.0 | 1.5 ± 0.6 | 0.449 |
Toothbrush + Blendamed | 2.25 ± 0.5 | 2.25 ± 0.5 | 3.0 ± 0.8 | 2.5 ± 0.6 | 0.310 |
Toothbrush + Protefix paste | 1.5 ± 0.6 | 2.25 ± 0.5 | 2.25 ± 1.0 | 2.25 ± 0.5 | 0.324 |
Protefix Tablets | 1.25 ± 0.5 | 2.5 ± 0.6 | 2.0 ± 0.0 | 2.0 ± 0.0 | 0.005 p1,2 = 0.001 p1,3 = 0.017 p1,4 = 0.017 |
Aftermat | 2.25 ± 0.5 | 3.0 ± 0.8 | 2.5 ± 0.6 | 3.0 ± 0.8 | 0.360 |
Plastitanium | 1 Toothbrush 15 min (n = 4) | 2 Toothbrush + Soap 15 min (n = 4) | 3 Toothbrush + Blendamed 15 min (n = 4) | 4 Toothbrush + Protefix Paste 15 min (n = 4) | 5 Protefix Tablets 15 min (n = 4) | 6 Aftermat 15 min (n = 4) | p |
---|---|---|---|---|---|---|---|
Small separating pieces, n (%) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 4(100.0) | 4 (100.0) | - |
Big separating pieces, n (%) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 0.390 |
Precipitate, n (%) | 2 (50.0) | 0 (0.0) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 3 (75.0) | 0.008 |
Grooves, n (%) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 2 (50.0) | 0.156 |
Holes, n (%) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 1 (25.0) | 0.066 |
Sum, mean ± SD | 4.5 ± 0.6 | 3.8 ± 0.5 | 5.0 ± 0.0 | 4.5 ± 1.0 | 4.8 ± 0.5 | 3.5 ± 0.6 | 0.016 p1,6 = 0.030 p2,3 = 0.009 p2,5 = 0.030 p3,6 = 0.002 p4,6 = 0.030 p5,6 = 0.009 |
Decontamination Method | 1 min (mean ± SD) | 5 min (mean ± SD) | 10 min (mean ± SD) | 15 min (mean ± SD) | p |
---|---|---|---|---|---|
Toothbrush | 4.0 ± 0.8 | 3.5 ± 0.6 | 4.3 ± 0.5 | 4.5 ± 0.6 | 0.193 |
Toothbrush + soap | 2.8 ± 0.5 | 3.5 ± 0.6 | 3.8 ± 0.5 | 3.8 ± 0.5 | 0.057 |
Toothbrush + Blendamed | 4.5 ± 0.6 | 4.8 ± 0.5 | 4.8 ± 0.5 | 5.0 ± 0.0 | 0.517 |
Toothbrush + Protefix paste | 2.8 ± 1.0 | 3.5 ± 0.6 | 4.3 ± 0.5 | 4.5 ± 1.0 | 0.035 p1,3 = 0.020 p1,4 = 0.009 |
Protefix Tablets | 3.8 ± 1.0 | 4.8 ± 0.5 | 4.5 ± 1.0 | 4.8 ± 0.5 | 0.269 |
Aftermat | 2.5 ± 0.6 | 3.0 ± 0.8 | 3.3 ± 0.5 | 3.5 ± 0.6 | 0.193 |
Decontamination Method | Plastitanium (mean ± SD) | Molosil (mean ± SD) | p |
---|---|---|---|
Toothbrush | 4.5 ± 0.6 | 1.5 ± 1.0 | 0.002 |
Toothbrush + soap | 3.8 ± 0.5 | 1.5 ± 0.6 | 0.001 |
Toothbrush + Blendamed | 5.0 ± 0.0 | 2.5 ± 0.6 | 0.003 |
Toothbrush + Protefix Paste | 4.5 ± 1.0 | 2.3 ± 0.5 | 0.007 |
Protefix Tablets | 4.8 ± 0.5 | 2.0 ± 0.0 | 0.002 |
Aftermat | 3.5 ± 0.6 | 3.0 ± 0.8 | 0.356 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mańka-Malara, K.; Trzaskowski, M.; Gawlak, D. The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics. Polymers 2021, 13, 4340. https://doi.org/10.3390/polym13244340
Mańka-Malara K, Trzaskowski M, Gawlak D. The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics. Polymers. 2021; 13(24):4340. https://doi.org/10.3390/polym13244340
Chicago/Turabian StyleMańka-Malara, Katarzyna, Maciej Trzaskowski, and Dominika Gawlak. 2021. "The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics" Polymers 13, no. 24: 4340. https://doi.org/10.3390/polym13244340
APA StyleMańka-Malara, K., Trzaskowski, M., & Gawlak, D. (2021). The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics. Polymers, 13(24), 4340. https://doi.org/10.3390/polym13244340