Retrieving Equivalent Shear Viscosity for Molten Polymers from 3-D Nonisothermal Capillary Flow Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermoplastic Polymers and Rheological Characterization
2.2. Governing Equations
2.3. Meshes for Capillary Flow Simulation
2.4. Temperature Profiles and Capillary Pressure Drops
3. Results and Discussion
3.1. Definition of Average Wall Shear Viscosity
3.2. Temperature Correction of Shear Viscosity
3.3. Rheological Properties at Wall in Nonisothermal Flow
3.4. Assessment of Temperature-Corrected Shear Viscosity
3.5. Material-Independent Scaling Relation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids. Vol. 1 Fluid Mechanics, 2nd ed.; Wiley: New York, NY, USA, 1987; ISBN 0-471-80245-X. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; Wiley: New York, NY, USA, 2002; ISBN 0-471-41077-2. [Google Scholar]
- Bird, R.B. Viscous Heat Effects in Extrusion of Molten Plastics. SPE J. 1955, 11, 35–40. [Google Scholar]
- Gerrard, J.E.; Steidler, F.E.; Appeldoorn, J.K. Viscous Heating in Capillaries. The Isothermal-Wall Case. Ind. Eng. Chem. Fundamen. 1966, 5, 260–263. [Google Scholar] [CrossRef]
- Ghanbari, A.; Mousavi, Z.; Heuzey, M.; Patience, G.S.; Carreau, P.J. Experimental Methods in Chemical Engineering: Rheometry. Can. J. Chem. Eng. 2020, 98, 1456–1470. [Google Scholar] [CrossRef]
- Warren, R.C. Viscous Heating. In Rheological Measurement, 2nd ed.; Springer: London, UK, 1998; pp. 210–236. [Google Scholar]
- Friesenbichler, W.; Neunhäuserer, A.; Duretek, I. Rheometry of Polymer Melts Using Processing Machines. Korea-Aust. Rheol. J. 2016, 28, 167–174. [Google Scholar] [CrossRef]
- Syrjälä, S.; Aho, J. Capillary Rheometry of Polymer Melts—Simulation and Experiment. Korea-Aust. Rheol. J. 2012, 24, 241–247. [Google Scholar] [CrossRef]
- Agassant, J.-F.; Avenas, P.; Carreau, P.J.; Vergnes, B.; Vincent, M. Polymer Processing: Principles and Modelling, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2017; ISBN 1-56990-605-X. [Google Scholar]
- Traintinger, M.; Kerschbaumer, R.C.; Lechner, B.; Friesenbichler, W.; Lucyshyn, T. Temperature Profile in Rubber Injection Molding: Application of a Recently Developed Testing Method to Improve the Process Simulation and Calculation of Curing Kinetics. Polymers 2021, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Sharma, H.; Senthilmurugan, M.; Bandyopadhyay, S.; Mukhopadhyay, P. Determination of the Pressure Dependence of Polymer Melt Viscosity Using a Combination of Oscillatory and Capillary Rheometer. Polym. Eng. Sci. 2020, 60, 517–523. [Google Scholar] [CrossRef]
- Hatzikiriakos, S.G.; Dealy, J.M. Wall Slip of Molten High Density Polyethylenes. II. Capillary Rheometer Studies. J. Rheol. 1992, 36, 703–741. [Google Scholar] [CrossRef]
- Kamal, M.R.; Nyun, H. Capillary Viscometry: A Complete Analysis Including Pressure and Viscous Heating Effects. Polym. Eng. Sci. 1980, 20, 109–119. [Google Scholar] [CrossRef]
- Laun, H.M. Capillary Rheometry for Polymer Melts Revisited. Rheol. Acta 2004, 43, 509–528. [Google Scholar] [CrossRef]
- Daryanani, R.; Janeschitz-Kriegl, H.; van Donselaar, R.; van Dam, J. A Calorimetric Measurement of Frictional Heat in Capillary Rheometry of Polymer Melts. Rheol. Acta 1973, 12, 19–24. [Google Scholar] [CrossRef]
- Cox, H.W.; Macosko, C.W. Viscous Dissipation in Die Flows. AIChE J. 1974, 20, 785–795. [Google Scholar] [CrossRef]
- Perko, L.; Fasching, M.; Friesenbichler, W. Model for the Prediction of Bulk Temperature Changes and Pressure Losses in Rubber Compounds Flowing through Conical Dies: An Engineering Approach. Polym. Eng. Sci. 2015, 55, 701–709. [Google Scholar] [CrossRef]
- Van Leeuwen, J. Stock Temperature Measurement in Plastifying Equipment. Polym. Eng. Sci. 1967, 7, 98–109. [Google Scholar] [CrossRef]
- Carter, R.E.; Warren, R.C. Extrusion Stresses, Die Swell, and Viscous Heating Effects in Double-Base Propellants. J. Rheol. 1987, 31, 151–173. [Google Scholar] [CrossRef]
- Rosenbaum, E.E.; Hatzikiriakos, S.G. Wall Slip in the Capillary Flow of Molten Polymers Subject to Viscous Heating. AIChE J. 1997, 43, 598–608. [Google Scholar] [CrossRef]
- Gerrard, J.E.; Steidler, F.E.; Appeldoorn, J.K. Viscous Heating in Capillaries. The Adiabatic Case. Ind. Eng. Chem. Fundamen. 1965, 4, 332–339. [Google Scholar] [CrossRef]
- Kim, H.T.; Collins, E.A. Temperature Profiles for Polymer Melts in Tube Flow. Part II. Conduction and Shear Heating Corrections. Polym. Eng. Sci. 1971, 11, 83–92. [Google Scholar] [CrossRef]
- Bur, A.J.; Roth, S.C. Fluorescence Temperature Measurements: Methodology for Applications to Process Monitoring. Polym. Eng. Sci. 2004, 44, 898–908. [Google Scholar] [CrossRef]
- Brinkman, H.C. Heat Effects in Capillary Flow I. Appl. Sci. Res. 1951, 2, 120–124. [Google Scholar] [CrossRef]
- Winter, H.H. Temperature Fields in Extruder Dies with Circular, Annular, or Slit Cross-Section. Polym. Eng. Sci. 1975, 15, 84–89. [Google Scholar] [CrossRef]
- Hay, G.; Mackay, M.E.; Awati, K.M.; Park, Y. Pressure and Temperature Effects in Slit Rheometry. J. Rheol. 1999, 43, 1099–1116. [Google Scholar] [CrossRef] [Green Version]
- Lodge, A.S. Slit Die Viscometry at Shear Rates up to 5 × 106 s−1: An Analytical Correction for Small Viscous Heating Errors. Rheol. Acta 1989, 28, 464–472. [Google Scholar] [CrossRef]
- Ybarra, R.M.; Eckert, R.E. Viscous Heat Generation in Slit Flow. AIChE J. 1980, 26, 751–762. [Google Scholar] [CrossRef]
- Winter, H.H. Viscous Dissipation in Shear Flows of Molten Polymers. Adv. Heat Transf. 1977, 13, 205–267. [Google Scholar] [CrossRef]
- Friesenbichler, W.; Langecker, G.R.; Duretek, I.; Schuschnigg, S. Polymer Melt Rheology at High Shear Rates Using a New Micro-Rheology Technique. In Proceedings of the 21st Annual Meeting of the Polymer Processing Society, Leipzig, Germany, 19–23 June 2005. [Google Scholar]
- Ko, Y.S.; Lodge, A.S. Viscous Heating Correction for Thermally Developing Flows in Slit Die Viscometry. Rheol. Acta 1991, 30, 357–368. [Google Scholar] [CrossRef]
- Hieber, C.A. Thermal Effects in the Capillary Rheometer. Rheol. Acta 1977, 16, 553–567. [Google Scholar] [CrossRef]
- Friesenbichler, W.; Duretek, I.; Rajganesh, J.; Kumar, S.R. Measuring the Pressure Dependent Viscosity at High Shear Rates Using a New Rheological Injection Mould. Polimery 2011, 56, 58–62. [Google Scholar] [CrossRef]
- Bagley, E.B. End Corrections in the Capillary Flow of Polyethylene. J. Appl. Phys. 1957, 28, 624–627. [Google Scholar] [CrossRef]
- Zhang, Z.; Hatzikiriakos, S.G. Entry Pressure Correlations in Capillary Flow. Phys. Fluids 2020, 32, 073106. [Google Scholar] [CrossRef]
- Rabinowitsch, B. Über die Viskosität und Elastizität von Solen. Z. Phys. Chem. 1929, 145A, 1–26. [Google Scholar] [CrossRef]
- Morrison, F.A. Understanding Rheology; Oxford University Press: New York, NY, USA, 2001; ISBN 0-19-514166-0. [Google Scholar]
- Cross, M.M. Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems. J. Colloid Sci. 1965, 20, 417–437. [Google Scholar] [CrossRef]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Tanner, R.I. Engineering Rheology, 2nd ed.; Oxford University Press: New York, NY, USA, 2002; ISBN 0-19-856473-2. [Google Scholar]
- Macosko, C.W. Rheology: Principles, Measurements, and Applications; Wiley-VCH: New York, NY, USA, 1994; ISBN 0-471-18575-2. [Google Scholar]
- Stricker, M.; Steinbichler, G. Determination of Heat Transfer Coefficients at the Polymer-Mold-Interface for Injection Molding Simulation by Means of Calorimetry. In Proceedings of the 29th International Conference of the Polymer Processing Society, Nuremberg, Germany, 15–19 July 2013; Volume 1593, pp. 137–141. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.J.; Sunderland, J.E.; Poli, C. Thermal Contact Resistance in Injection Molding. Polym. Eng. Sci. 1990, 30, 1599–1606. [Google Scholar] [CrossRef]
- Nguyen-Chung, T.; Jüttner, G.; Löser, C.; Pham, T.; Gehde, M. Determination of the Heat Transfer Coefficient from Short-Shots Studies and Precise Simulation of Microinjection Molding. Polym. Eng. Sci. 2010, 50, 165–173. [Google Scholar] [CrossRef]
- Massé, H.; Arquis, É.; Delaunay, D.; Quilliet, S.; Le Bot, P.H. Heat Transfer with Mechanically Driven Thermal Contact Resistance at the Polymer–Mold Interface in Injection Molding of Polymers. Int. J. Heat Mass Transf. 2004, 47, 2015–2027. [Google Scholar] [CrossRef]
- Binding, D.M. An Approximate Analysis for Contraction and Converging Flows. J. Non-Newtonian Fluid Mech. 1988, 27, 173–189. [Google Scholar] [CrossRef]
- Feigl, K.; Öttinger, H.C. The Flow of a LDPE Melt through an Axisymmetric Contraction: A Numerical Study and Comparison to Experimental Results. J. Rheol. 1994, 38, 847–874. [Google Scholar] [CrossRef]
- Mitsoulis, E.; Hatzikiriakos, S.G.; Christodoulou, K.; Vlassopoulos, D. Sensitivity Analysis of the Bagley Correction to Shear and Extensional Rheology. Rheol. Acta 1998, 37, 438–448. [Google Scholar] [CrossRef]
- Mitsoulis, E.; Hatzikiriakos, S.G. Bagley Correction: The Effect of Contraction Angle and Its Prediction. Rheol. Acta 2003, 42, 309–320. [Google Scholar] [CrossRef]
- Ansari, M.; Alabbas, A.; Hatzikiriakos, S.G.; Mitsoulis, E. Entry Flow of Polyethylene Melts in Tapered Dies. Int. Polym. Process. 2010, 25, 287–296. [Google Scholar] [CrossRef]
- Ansari, M.; Zisis, T.; Hatzikiriakos, S.G.; Mitsoulis, E. Capillary Flow of Low-Density Polyethylene. Polym. Eng. Sci. 2012, 52, 649–662. [Google Scholar] [CrossRef]
- Mitsoulis, E.; Battisti, M.; Neunhäuserer, A.; Perko, L.; Friesenbichler, W.; Ansari, M.; Hatzikiriakos, S.G. Flow Behaviour of Rubber in Capillary and Injection Moulding Dies. Plast. Rubber Compos. 2017, 46, 110–118. [Google Scholar] [CrossRef]
- Mitsoulis, E.; Battisti, M.; Neunhäuserer, A.; Perko, L.; Friesenbichler, W. Flow Behavior of PP-Polymer Nanocomposites in Capillary and Injection Molding Dies. Int. Polym. Process. 2017, 32, 217–226. [Google Scholar] [CrossRef]
- Mitsoulis, E.; Luger, H.-J.; Miethlinger, J.; Friesenbichler, W. Flow Behavior of a Polypropylene Melt in Capillary Dies. Int. Polym. Process. 2018, 33, 642–651. [Google Scholar] [CrossRef]
- Mitsoulis, E.; Hatzikiriakos, S.G. Rheological Properties Related to Extrusion of Polyolefins. Polymers 2021, 13, 489. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Gupta, M. Further Investigation of the Effect of Elongational Viscosity on Entrance Flow. J. Reinf. Plast. Compos. 2001, 20, 1473–1484. [Google Scholar] [CrossRef]
- Stieger, S.; Mitsoulis, E.; Walluch, M.; Ebner, C.; Kerschbaumer, R.C.; Haselmann, M.; Mostafaiyan, M.; Kämpfe, M.; Kühnert, I.; Wießner, S.; et al. On the Influence of Viscoelastic Modeling in Fluid Flow Simulations of Gum Acrylonitrile Butadiene Rubber. Polymers 2021, 13, 2323. [Google Scholar] [CrossRef]
- Barus, C. Note on the Dependence of Viscosity on Pressure and Temperature. Proc. Am. Acad. Arts Sci. 1891, 27, 13–18. [Google Scholar] [CrossRef]
- Dees, M.; Mangnus, M.; Hermans, N.; Thaens, W.; Hanot, A.-S.; Van Puyvelde, P. On the Pressure Correction of Capillary Melt Rheology Data. Rheol. Acta 2011, 50, 117–124. [Google Scholar] [CrossRef]
- Aho, J.; Syrjälä, S. Measurement of the Pressure Dependence of Viscosity of Polymer Melts Using a Back Pressure-Regulated Capillary Rheometer. J. Appl. Polym. Sci. 2010, 117, 1076–1084. [Google Scholar] [CrossRef]
- Son, Y. Measurement of Pressure Dependence on the Shear Viscosity of Polymer Melts. J. Polym. Res. 2009, 16, 667–671. [Google Scholar] [CrossRef]
- Carreras, E.S.; Kissi, N.E.; Piau, J.-M.; Toussaint, F.; Nigen, S. Pressure Effects on Viscosity and Flow Stability of Polyethylene Melts during Extrusion. Rheol. Acta 2006, 45, 209–222. [Google Scholar] [CrossRef]
- Sorrentino, A.; Pantani, R. Pressure-Dependent Viscosity and Free Volume of Atactic and Syndiotactic Polystyrene. Rheol. Acta 2009, 48, 467–478. [Google Scholar] [CrossRef]
- Archer, L.A. Wall Slip: Measurement and Modeling Issues. In Polymer Processing Instabilities; Marcel Dekker: New York, NY, USA, 2005; pp. 73–120. [Google Scholar]
Sample | (°C) | k | ||||
---|---|---|---|---|---|---|
HIPS | 220 | 0.256 | 5.5 | 0.178 | ||
GPPS | 210 | 0.259 | 8.0 | 0.250 | ||
ABS | 210 | 0.235 | 1.6 | 0.222 | ||
PP | 210 | 0.279 | 14.5 | 0.109 | ||
Filled PA66 | 290 | 0.282 | 20.8 | 0.015 |
Sample | n | Corrected n | |||||
---|---|---|---|---|---|---|---|
HIPS | 0.272 | 0.293 | 373.15 | 26.86 | 51.57 | ||
GPPS | 0.246 | 0.261 | 363.15 | 31.29 | 51.57 | ||
ABS | 0.237 | 0.277 | 363.15 | 31.99 | 51.57 | ||
PP | 0.299 | 0.310 | 263.15 | 46.48 | 51.57 | ||
Filled PA66 | 0.368 | 0.463 | 373.15 | 65.22 | 51.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.-H.; Wang, C.-C.; Cyue, G.-S.; Kuo, R.-H.; Hsu, C.-H.; Chang, R.-Y. Retrieving Equivalent Shear Viscosity for Molten Polymers from 3-D Nonisothermal Capillary Flow Simulation. Polymers 2021, 13, 4094. https://doi.org/10.3390/polym13234094
Wen Y-H, Wang C-C, Cyue G-S, Kuo R-H, Hsu C-H, Chang R-Y. Retrieving Equivalent Shear Viscosity for Molten Polymers from 3-D Nonisothermal Capillary Flow Simulation. Polymers. 2021; 13(23):4094. https://doi.org/10.3390/polym13234094
Chicago/Turabian StyleWen, Yu-Ho, Chen-Chieh Wang, Guo-Sian Cyue, Rong-Hao Kuo, Chia-Hsiang Hsu, and Rong-Yeu Chang. 2021. "Retrieving Equivalent Shear Viscosity for Molten Polymers from 3-D Nonisothermal Capillary Flow Simulation" Polymers 13, no. 23: 4094. https://doi.org/10.3390/polym13234094
APA StyleWen, Y.-H., Wang, C.-C., Cyue, G.-S., Kuo, R.-H., Hsu, C.-H., & Chang, R.-Y. (2021). Retrieving Equivalent Shear Viscosity for Molten Polymers from 3-D Nonisothermal Capillary Flow Simulation. Polymers, 13(23), 4094. https://doi.org/10.3390/polym13234094