Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
- Hyaluronic acid, glycine, 2-hydroxyethylcellulose, pepsin, copper(II) chloride dihydrate (Sigma-Aldrich, Saint Louis, MO, USA)
- Citric acid (Lach-Ner Ltd., Neratovice, Czech Republic)
- Ethanol 96%, ethyl acetate, hexane 99%, sodium hydroxide, hydrochloric acid, sodium carbonate, sodium hydrogen carbonate (PENTA s.r.o., Prague, Czech Republic)
- Potassium bromide for IR spectroscopy (Merck KGaA, Darmstadt, Germany)
2.2. Preparative Procedures
2.2.1. Fractionation of Supplement 1
2.2.2. Fractionation of Supplement 2
2.2.3. Fractionation of Supplement 3
2.3. FT-IR Spectroscopy
2.4. Isotachophoresis
2.5. Photometry
3. Results and Discussion
3.1. Description of the Isolated Fractions
3.2. FT-IR Spectra
3.2.1. Raw Supplements
3.2.2. Fractionation of Supplement 1
3.2.3. Fractionation of Supplement 2
3.2.4. Fractionation of Supplement 3
3.3. Detection and Quantification of Hyaluronic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosa, C.S.D.; Tovar, A.F.; Mourão, P.; Pereira, R.; Barreto, P.; Beirão, L.H. Purification and characterization of hyaluronic acid from chicken combs. Ciência Rural 2012, 42, 1682–1687. [Google Scholar] [CrossRef] [Green Version]
- Chahuki, F.F.; Aminzadeh, S.; Jafarian, V.; Tabandeh, F.; Khodabandeh, M. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int. J. Biol. Macromol. 2019, 121, 870–881. [Google Scholar] [CrossRef]
- Widner, B.; Behr, R.; Von Dollen, S.; Tang, M.; Heu, T.; Sloma, A.; Sternberg, D.; DeAngelis, P.L.; Weigel, P.H.; Brown, S. Hyaluronic Acid Production in Bacillus subtilis. Appl. Environ. Microbiol. 2005, 71, 3747–3752. [Google Scholar] [CrossRef] [Green Version]
- Kogan, G.; Šoltés, L.; Stern, R.; Schiller, J.; Mendichi, R. Hyaluronic Acid: Its Function and Degradation in in vivo Systems. Bioact. Nat. Prod. (Part L) 2008, 34, 789–882. [Google Scholar] [CrossRef]
- Kripotou, S.; Zafeiris, K.; Culebras-Martínez, M.; Gallego-Ferrer, G.; Kyritsis, A. Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. Eur. Phys. J. E 2019, 42, 109. [Google Scholar] [CrossRef]
- Hahn, S.K.; Park, J.K.; Tomimatsu, T.; Shimoboji, T. Synthesis and degradation test of hyaluronic acid hydrogels. Int. J. Biol. Macromol. 2007, 40, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, A.; Molina, J.V.; Kyritsis, A.; Pradas, M.M.; Lluch, A.V.; Ferrer, G.G.; Pissis, P. Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels. Food Biophys. 2013, 8, 192–202. [Google Scholar] [CrossRef]
- Salwowska, N.M.; Bebenek, K.A.; Żądło, D.A.; Wcisło-Dziadecka, D.L. Physiochemical properties and application of hyaluronic acid: A systematic review. J Cosmet. Derm. 2016, 15, 520–526. [Google Scholar] [CrossRef]
- Vorvolakos, K.; Coburn, J.C.; Saylor, D.M. Dynamic interfacial behavior of viscoelastic aqueous hyaluronic acid: Effects of molecular weight, concentration and interfacial velocity. Soft Matter 2014, 10, 2304–2312. [Google Scholar] [CrossRef]
- Zhang, Z.; Christopher, G.F. The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication. Soft Matter 2015, 11, 2596–2603. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Okamoto, A.; Nishinari, K. Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 1994, 31, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Fusco, S.; Borzacchiello, A.; Miccio, L.; Pesce, G.; Rusciano, G.; Sasso, A.; Netti, P. High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions. Biorheology 2007, 44, 403–418. [Google Scholar]
- Tammi, M.I.; Day, A.; Turley, E.A. Hyaluronan and Homeostasis: A Balancing Act. J. Biol. Chem. 2002, 277, 4581–4584. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.W.; Johns, M.R.; Greenfield, P.F. Hyaluronic acid-a versatile biopolymer. Aust. J. Biotechnol. 1990, 4, 38–43. [Google Scholar]
- Mráček, A.; Varhaníková, J.; Lehocký, M.; Gřundělová, L.; Pokopcová, A.; Velebný, V. The Influence of Hofmeister Series Ions on Hyaluronan Swelling and Viscosity. Molecules 2008, 13, 1025–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnoli, C.; Korniakov, A.; Ulman, A.; Balazs, E.A.; Lyubchenko, Y.L.; Cowman, M.K. Hyaluronan conformations on surfaces: Effect of surface charge and hydrophobicity. Carbohydr. Res. 2005, 340, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid—Based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef] [PubMed]
- Longinotti, C. The use of hyaluronic acid based dressings to treat burns: A review. Burn. Trauma 2014, 2, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Schneider, H.P.; Landsman, A. Preclinical and Clinical Studies of Hyaluronic Acid in Wound Care: A Case Series and Literature Review. Wounds 2019, 31, 41–48. [Google Scholar]
- Neuman, M.G.; Nanau, R.M.; Oruña-Sanchez, L.; Coto, G. Hyaluronic Acid and Wound Healing. J. Pharm. Pharm. Sci. 2015, 18, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Price, R.D.; Myers, S.; Leigh, I.M.; Navsaria, H.A. The Role of Hyaluronic Acid in Wound Healing. Am. J. Clin. Dermatol. 2005, 6, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013, 92, 1262–1279. [Google Scholar] [CrossRef] [PubMed]
- Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78–88. [Google Scholar]
- Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Dalir, E.; Vahedi, P.; Hasanzadeh, A.; Samiei, M. The Potential Applications of Hyaluronic Acid Hydrogels in Biomedicine. Drug Res. 2020, 70, 6–11. [Google Scholar] [CrossRef]
- Cooper, C.A.; Brown, K.K.; Meletis, C.D.; Zabriskie, N. Inflammation and Hyaluronic Acid. Altern. Complement. Ther. 2008, 14, 78–84. [Google Scholar] [CrossRef] [Green Version]
- How, K.N.; Yap, W.H.; Lim, C.L.H.; Goh, B.H.; Lai, Z.W. Hyaluronic Acid-Mediated Drug Delivery System Targeting for Inflammatory Skin Diseases: A Mini Review. Front. Pharmacol. 2020, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Price, R.D.; Berry, M.; Navsaria, H.A. Hyaluronic acid: The scientific and clinical evidence. J. Plast. Reconstr. Aesthetic Surg. 2007, 60, 1110–1119. [Google Scholar] [CrossRef]
- Sionkowska, A.; Gadomska, M.; Musiał, K.; Piątek, J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules 2020, 25, 4035. [Google Scholar] [CrossRef]
- Restaino, O.F.; De Rosa, M.; Schiraldi, C. High-performance capillary electrophoresis to determine intact keratan sulfate and hyaluronic acid in animal origin chondroitin sulfate samples and food supplements. Electrophoresis 2020, 41, 1740–1748. [Google Scholar] [CrossRef]
- Park, S.W.; Lee, W.J. Development of validated HPLC method for the determination of hyaluronic acid in dietary supplement formulations. Bull. Korean Chem. Soc. 2015, 36, 1270–1273. [Google Scholar] [CrossRef]
- Chindaphan, K.; Wongravee, K.; Nhujak, T.; Dissayabutra, T.; Srisa-Art, M. Online preconcentration and determination of chondroitin sulfate, dermatan sulfate and hyaluronic acid in biological and cosmetic samples using capillary electrophoresis. J. Sep. Sci. 2019, 42, 2867–2874. [Google Scholar] [CrossRef]
- Alkrad, J.A.; Merstani, Y.; Neubert, R.H. New approaches for quantifying hyaluronic acid in pharmaceutical semisolid formulations using HPLC and CZE. J. Pharm. Biomed. Anal. 2002, 30, 913–919. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ohta, T.; Morikawa, Y. Electrophoretic behavior of sodium hyaluronate by capillary-tube isotachophoresis. Bunseki Kagaku 1982, 31, 557–561. [Google Scholar] [CrossRef]
- Kašparová, J.; Arnoldová, K.; Korecká, L.; Česlová, L. Determination of hyaluronic acid in pharmaceutical products by spectrophotometry and HPLC coupled to fluorescence or mass spectrometric detection. Sci. Pap. Univ. Pardubice Ser. A Fac. Chem. Technol. 2018, 24, 39–47. [Google Scholar]
- Pepeliaev, S.; Hrudíková, R.; Jílková, J.; Pavlík, J.; Smirnou, D.; Černý, Z. Colorimetric enzyme-coupled assay for hyaluronic acid determination in complex samples. Eur. Polym. J. 2017, 94, 460–470. [Google Scholar] [CrossRef]
- Yang, Y.; Breadmore, M.; Thormann, W. Analysis of the disaccharides derived from hyaluronic acid and chondroitin sulfate by capillary electrophoresis with sample stacking. J. Sep. Sci. 2005, 28, 2381–2389. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.; Nyerges, B.; Izvekov, V. Vibrational Analysis of N-Acetyl-α-d-glucosamine and β-d-Glucuronic Acid. J. Phys. Chem. B 2008, 112, 5728–5735. [Google Scholar] [CrossRef] [PubMed]
- Gilli, R.; Kacuráková, M.; Mathlouthi, M.; Navarini, L.; Paoletti, S. FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydr. Res. 1994, 263, 315–326. [Google Scholar] [CrossRef]
- Haxaire, K.; Maréchal, Y.; Milas, M.; Rinaudo, M. Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 2003, 72, 10–20. [Google Scholar] [CrossRef]
- Maréchal, Y.; Milas, M.; Rinaudo, M. Hydration of hyaluronan polysaccharide observed by IR spectrometry. III. Structure and mechanism of hydration. Biopolym. Orig. Res. Biomol. 2003, 72, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Servaty, R.; Schiller, J.; Binder, H.; Arnold, K. Hydration of polymeric components of cartilage—An infrared spectroscopic study on hyaluronic acid and chondroitin sulfate. Int. J. Biol. Macromol. 2001, 28, 121–127. [Google Scholar] [CrossRef]
- Mainreck, N.; Brézillon, S.; Sockalingum, G.D.; Maquart, F.-X.; Manfait, M.; Wegrowski, Y. Rapid Characterization of Glycosaminoglycans Using a Combined Approach by Infrared and Raman Microspectroscopies. J. Pharm. Sci. 2011, 100, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Al-Sibani, M.; Al-Harrasi, A.; Neubert, R.H.H. Characterization of linear and chemically cross-linked hyaluronic acid using various analytical techniques including FTIR, ESI-MS, H1 NMR, and SEM. J. Biochem. Anal. Stud. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Wurm, F.; Rietzler, B.; Pham, T.; Bechtold, T. Multivalent Ions as Reactive Crosslinkers for Biopolymers—A Review. Molecules 2020, 25, 1840. [Google Scholar] [CrossRef]
- Hwang, J.; Roshdy, T.; Kontominas, M.; Kokini, J. Comparison of Dialysis and Metal Precipitation Effects on Apple Pectins. J. Food Sci. 1992, 57, 1180–1184. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Res. Int. 2009, 42, 1197–1202. [Google Scholar] [CrossRef]
- Guo, X.; Meng, H.; Zhu, S.; Zhang, T.; Yu, S. Purifying sugar beet pectins from non-pectic components by means of metal precipitation. Food Hydrocoll. 2015, 51, 69–75. [Google Scholar] [CrossRef]
- Kohn, R.; Tibenský, V. Determination of the carboxyl groups of pectin by the precipitation of insoluble copper pectates and pectinates. Chem. Pap. 1965, 19, 98–106. [Google Scholar]
- Wang, F.; Du, C.; Chen, J.; Shi, L.; Li, H. A New Method for Determination of Pectin Content Using Spectrophotometry. Polymers 2021, 13, 2847. [Google Scholar] [CrossRef]
- Pirc, E.T.; Arčon, I.; Bukovec, P.; Kodre, A. Preparation and characterisation of copper(II) hyaluronate. Carbohydr. Res. 2000, 324, 275–282. [Google Scholar] [CrossRef]
- Pirc, E.T.; Zidar, J.; Bukovec, P. A Computational Study of Calcium(II) and Copper(II) Ion Binding to the Hyaluronate Molecule. Int. J. Mol. Sci. 2012, 13, 12036–12045. [Google Scholar] [CrossRef] [Green Version]
- Lapčík, Ľ.; Dammer, C.; Valko, M. Hyaluronic acid-copper(II) complexes: Spectroscopic characterization. Colloid Polym. Sci. 1992, 270, 1049–1052. [Google Scholar] [CrossRef]
- Nagy, L.; Yamashita, S.; Yamaguchi, T.; Sipos, P.; Wakita, H.; Nomura, M. The local structures of Cu(II) and Zn(II) complexes of hyaluronate. J. Inorg. Biochem. 1998, 72, 49–55. [Google Scholar] [CrossRef]
- Sterk, H.; Braun, M.; Schmut, O.; Feichtinger, H. Investigation of the hyaluronic acid-copper complex by N.M.R. spectroscopy. Carbohydr. Res. 1985, 145, 1–11. [Google Scholar] [CrossRef]
- Chai, X.-S.; Zhang, D.; Hou, Q.; Yoon, S.-H. Spectrophotometric determination of reducing aldehyde groups in bleached chemical pulps. J. Ind. Eng. Chem. 2007, 13, 597–601. [Google Scholar]
- Vaclavikova, E.; Kvasnicka, F. Isotachophoretic determination of glucosamine and chondroitin sulphate in dietary supplements. Czech J. Food Sci. 2013, 31, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Václavíková, E.; Kvasnička, F. Quality control of chondroitin sulphate used in dietary supplements. Czech J. Food Sci. 2016, 33, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Glassford, S.E.; Byrne, B.; Kazarian, S. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 2849–2858. [Google Scholar] [CrossRef] [Green Version]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Beaussart, A.; Petrone, L.; Mierczynska-Vasilev, A.; McQuillan, A.J.; Beattie, D.A. In Situ ATR FTIR Study of Dextrin Adsorption on Anatase TiO2. Langmuir 2012, 28, 4233–4240. [Google Scholar] [CrossRef]
- Ramachandran, E.; Natarajan, S. Gel growth and characterization of β-DL-methionine. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2006, 41, 411–415. [Google Scholar] [CrossRef]
- Grunenberg, A.; Bougeard, D. Vibrational spectra and conformational phase transition of crystalline l-methionine. J. Mol. Struct. 1987, 160, 27–36. [Google Scholar] [CrossRef]
- Bichara, L.C.; Lanús, H.E.; Nieto-Peñalver, C.; Brandán, S.A. Density Functional Theory Calculations of the Molecular Force Field of l-Ascorbic Acid, Vitamin C. J. Phys. Chem. A 2010, 114, 4997–5004. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Cabo, N. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 1997, 75, 1–11. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Zhbankov, R.G. Infrared Spectra of Cellulose and Its Derivatives; Springer: Boston, MA, USA, 1995. [Google Scholar]
- Jaravel, L.; Schindler, B.; Randon, J.; Compagnon, I.; Demesmay, C.; Dugas, V. Off-line coupling of capillary isotachophoresis separation to IRMPD spectroscopy for glycosaminoglycans analysis: Application to the chondroitin sulfate disaccharides model solutes. J. Chromatogr. A 2019, 1617, 460782. [Google Scholar] [CrossRef]
- Sundaresan, G.; Abraham, R.J.J.; Rao, V.A.; Babu, R.N.; Govind, V.; Meti, M.F. Established method of chondroitin sulphate extraction from buffalo (Bubalus bubalis) cartilages and its identification by FTIR. J. Food Sci. Technol. 2018, 55, 3439–3445. [Google Scholar] [CrossRef] [Green Version]
- Devlin, A.; Mauri, L.; Guerrini, M.; Yates, E.A.; Skidmore, M.A. The use of ATR-FTIR spectroscopy to characterise crude heparin samples by composition and structural features. BioRxiv 2019, 744532. [Google Scholar] [CrossRef]
Supplement | Form | Weight (g) | Ingredients | Weight (mg) | Content (% w/w) |
---|---|---|---|---|---|
1 | Powder doze | 13.18 | Hydrolyzed collagen | 10,000 | 75.87 |
Maltodextrin | 2730 | 20.71 | |||
Sodium | 180 | 1.37 | |||
Vanilla flavor | 150 | 1.14 | |||
Hyaluronic acids | 100 | 0.76 | |||
Sweetener | 20 | 0.15 | |||
2 | Tablet | 0.326 | l-Methionine | 150 | 46.01 |
Collagen | 70 | 21.47 | |||
Plant extracts | 60 | 18.40 | |||
l-Ascorbic acid | 20 | 6.13 | |||
Hyaluronic acids | 10 | 3.07 | |||
Ubiquinone-10 | 5 | 1.53 | |||
Nicotinic acid | 4 | 1.23 | |||
Vitamin E | 3 | 0.92 | |||
β-Carotene | 2 | 0.61 | |||
Zinc | 2 | 0.61 | |||
3 | Capsule | 0.425 | l-Ascorbic acid | 80 | 18.82 |
Hyaluronic acid | 25 | 5.88 | |||
Vitamin E | 6 | 1.41 | |||
Ubiquinone-10 | 5 | 1.18 | |||
Zinc | 5 | 1.18 | |||
Vitamin A | 0.8 | 0.19 | |||
Copper | 0.5 | 0.12 |
Supplement | Fraction | Weight (g) | Yield (% w/w) | Composition |
---|---|---|---|---|
1 (13.1783 g) | 1.1 | 12.8512 | 97.50 | Biopolymeric substances |
1.2 | 0.6523 | 4.95 | Polysaccharides | |
1.3 | 0.1013 | 0.77 | Hyaluronic acid | |
1.4 | 0.2861 | 2.17 | Maltodextrins | |
2 (9.7815 g) | 2.1 | 9.6411 | 98.56 | Biopolymeric substances |
2.2 | 0.8012 | 8.19 | Cellulose | |
2.3 | 0.3521 | 3.60 | Hyaluronic acid | |
2.4 | 0.1565 | 1.60 | Polysaccharides (starch) | |
3 (4.2496 g) | 3.1 | 1.1805 | 27.78 | Hyaluronic acid and mineral substances |
3.2 | 0.0082 | 0.19 | Mineral substances | |
3.3 | 0.2305 | 5.42 | Hyaluronic acid |
Wavelength (cm−1) | Vibration Mode | Functional Group, Compound | ||
---|---|---|---|---|
1.3 | 2.3 | 3.3 | ||
3425 | 3407 | 3429 | ν(OH) | CHOH, CH2OH |
3277 sh, 3094 sh | 3271 sh, 3074 sh | 3275 sh, 3098 sh | amide A, B | CONH |
2967 sh | 2973 sh | 2971 sh | νas(CH3) | N-Ac |
2926 | 2925 | 2921 | νas(CH2), ν(CH) | CHOH, CH2OH |
2878 sh | 2876 sh | 2883 sh | νs(CH3), ν(CH) | N-Ac, CHOH |
2854 sh | 2853 sh | 2852 sh | νs(CH2), ν(CH) | CHOH, CH2OH |
2653 | 2650 sh | 2650 | ν(OH) | COOH |
1738 | 1735 | 1745 | ν(C=O) | COOH |
1657 | 1658 | 1657 | amide I | CONH |
1552 | 1545 | 1563 | amide II | CONH |
1454 sh | 1466 sh, 1456 sh | 1470 sh, 1450 sh | δ(CH2), δas(CH3) | CH2OH, N-Ac |
1425 | 1430, 1413 sh | 1430 | δ(COH) | COOH |
1377 | 1382 | 1378 | δs(CH3); δ(OH) | CH3, CHOH |
1320 | 1331 | 1318 | amide III | CONH |
1260, 1230 sh | 1260 sh, 1231 | 1261, 1227 | amide III, ν(CO) | CONH, COOH |
1154, 1126 sh | 1154, 1124 sh | 1159, 1128 sh | ν(COC) | glycosidic bond |
1105 sh, 1079 | 1106 sh, 1080 | 1105 sh, 1078 | ν(CO)(CC), δ(COH) | pyranoid ring |
1044, 1021 sh, 988 sh | 1049 sh, 1025, 994 sh | 1046, 1022, 988 sh | ν(CO)(CC), δ(COH) | pyranoid ring |
947 | 946 | 944 sh | γ(CC)as | pyranoid ring |
923 sh | 923 sh | 930 | γ(COH) | COOH |
895 | 899 | 896 | δ(C1H) | β-anomer |
758 | 770 | ω(C=O) | COOH | |
699 | 706 | 680 | γ(CH2) | CH2OH |
608 | 610 | 608 | skeletal | pyranoid ring |
565 | 577 | 574 | ω(C=O) | CONH |
535 | skeletal | pyranoid ring |
Supplement | Hyaluronic Acid (% w/w) | ||||
---|---|---|---|---|---|
Declared | Gravimetry | Isotachophoresis | Photometry | ||
Mean (N = 3) | RSD (%) | ||||
1 | 0.76 | 0.77 | 1.00 | 0.82 | 2.48 |
2 | 3.07 | 3.60 | 3.30 | 3.06 | 1.36 |
3 | 5.88 | 5.42 | 5.60 | 5.96 | 0.95 |
Method | Advantages | Disadvantages |
---|---|---|
FT-IR spectroscopy | Structure-sensitive | Low sensitivity for quantification |
Non-destructive | Overlapping of the characteristic bands | |
Multianalytical | ||
Screening of the fractions | ||
Gravimetry | Rapid and easy | Cannot identify analyte and purity |
No specific equipment | Presence of impurities—overestimation | |
Loss of analyte–underestimation | ||
Isotachophoresis | High sensitivity for quantification | Molecular mass/charge ratio of hyaluronic acid will affect the position of zone |
Selective to specific polyanions | ||
Multianalytical | May interfere with polyanions | |
No interference with uncharged or cationic compounds | ||
Spectrophotometry | High sensitivity for quantification | Interfere with other compounds |
Easy calibration | Copper(II) oxidation | |
Sensitive to pH and ionic strength |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzayeva, T.; Čopíková, J.; Kvasnička, F.; Bleha, R.; Synytsya, A. Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy. Polymers 2021, 13, 4002. https://doi.org/10.3390/polym13224002
Mirzayeva T, Čopíková J, Kvasnička F, Bleha R, Synytsya A. Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy. Polymers. 2021; 13(22):4002. https://doi.org/10.3390/polym13224002
Chicago/Turabian StyleMirzayeva, Tamilla, Jana Čopíková, František Kvasnička, Roman Bleha, and Andriy Synytsya. 2021. "Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy" Polymers 13, no. 22: 4002. https://doi.org/10.3390/polym13224002
APA StyleMirzayeva, T., Čopíková, J., Kvasnička, F., Bleha, R., & Synytsya, A. (2021). Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy. Polymers, 13(22), 4002. https://doi.org/10.3390/polym13224002