Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Synthesis of Chitosan-Spheres (Chi-Spheres)
2.3. Synthesis of Silver Nanoparticles–Chitosan Composite Spheres (AgNPs-Chi-Spheres)
2.4. Characterizations of AgNPs-Chi-Spheres
2.4.1. UV–Vis Spectral Analysis
2.4.2. FT-IR Analysis
2.4.3. XRD Analysis
2.4.4. SEM-EDX Analysis
2.4.5. Zetasizer Nano Analysis
2.5. Antimicrobial Activity
3. Results and Discussion
3.1. Synthesis of Chitosan-Spheres (Chi-Spheres)
3.2. Synthesis of Silver Nanoparticles–Chitosan Composite Spheres (AgNPs-Chi-Spheres)
3.3. UV–Vis Spectral Analysis
3.4. FT-IR Analysis
3.5. XRD Analysis
3.6. SEM-EDX Analysis
3.7. Zetasizer Nano Analysis
3.8. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef]
- Sun, Y. Controlled synthesis of colloidal silver nanoparticles in organic solutions: Empirical rules for nucleation engineering. Chem. Soc. Rev. 2013, 42, 2497–2511. [Google Scholar] [CrossRef]
- Grumezescu, A.M.; Andronescu, E.; Holban, A.M.; Ficai, A.; Ficai, D.; Voicu, G.; Grumezescu, V.; Balaure, P.C.; Chifiriuc, C.M. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. Int. J. Pharm. 2013, 454, 233–240. [Google Scholar] [CrossRef]
- Wang, L.S.; Wang, C.Y.; Yang, C.H.; Hsieh, C.L.; Chen, S.Y.; Shen, C.Y.; Wang, J.J.; Huang, K.S. Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles. Int. J. Nanomed. 2015, 10, 2685–2696. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Kalaivani, R.; Maruthupandy, M.; Muneeswaran, T.; Hameedha Beevi, A.; Anand, M.; Ramakritinan, C.M.; Kumaraguru, A.K. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front. Lab. Med. 2018, 2, 30–35. [Google Scholar] [CrossRef]
- Lu, L.; Sun, R.W.-Y.; Chen, R.; Hui, C.-K.; Ho, C.-M.; Luk, J.M.; Lau, G.K.K.; Che, C.-M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008, 13, 253–262. [Google Scholar]
- Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate. Bioconjug. Chem. 2009, 20, 1497–1502. [Google Scholar] [CrossRef]
- Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Khairan, K.; Idroes, R.; Tallei, T.E.; Nasim, M.J.; Jacob, C. Bioactive Compounds from Medicinal Plants and Their Possible Effect as Therapeutics Agents against COVID-19: A Review. Curr. Nutr. Food Sci. 2021, 17, 621–633. [Google Scholar] [CrossRef]
- Zargar, M.; Hamid, A.A.; Bakar, F.A.; Shamsudin, M.N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex negundo L. Molecules 2011, 16, 6667–6676. [Google Scholar] [CrossRef]
- Prozorova, G.; Pozdnyakov, A.; Kuznetsova, N.; Korzhova, S.; Emel’yanov, A.; Ermakova, T.; Fadeeva, T.; Sosedova, L. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int. J. Nanomed. 2014, 9, 1883. [Google Scholar] [CrossRef] [Green Version]
- Laudenslager, M.J.; Schiffman, J.D.; Schauer, C.L. Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles. Biomacromolecules 2008, 9, 2682–2685. [Google Scholar] [CrossRef]
- Fouda, M.M.G.; El-Aassar, M.R.; Al-Deyab, S.S. Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr. Polym. 2013, 92, 1012–1017. [Google Scholar] [CrossRef]
- Fortunati, E.; Puglia, D.; Monti, M.; Santulli, C.; Maniruzzaman, M.; Kenny, J.M. Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J. Appl. Polym. Sci. 2013, 128, 3220–3230. [Google Scholar] [CrossRef]
- Muzalev, P.A.; Kosobudskii, I.D.; Kul’batskii, D.M.; Ushakov, N.M. Polymer composites based on polymethylmethacrylate with silver nanoparticles, synthesis and optical properties. Inorg. Mater. Appl. Res. 2012, 3, 40–43. [Google Scholar] [CrossRef]
- El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym. 2013, 96, 403–410. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.M.; Aly, A.S.; Hrdina, R.; El-Aref, A.T. A novel method for the preparation of silver/chitosan-O-methoxy polyethylene glycol core shell nanoparticles. J. Polym. Environ. 2012, 20, 459–468. [Google Scholar] [CrossRef]
- Mahae, N.; Chalat, C.; Muhamud, P. Antioxidant and antimicrobial properties of chitosan-sugar complex. Int. Food Res. J. 2011, 18, 1543–1551. [Google Scholar]
- Bin Ahmad, M.; Lim, J.J.; Shameli, K.; Ibrahim, N.A.; Tay, M.Y. Synthesis of Silver Nanoparticles in Chitosan, Gelatin and Chitosan/Gelatin Bionanocomposites by a Chemical Reducing Agent and Their Characterization. Molecules 2011, 16, 7237–7248. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Chen, K.; Jiang, S.; Reincke, F.; Tong, W.; Wang, D.; Gao, C. Chitosan-Mediated Synthesis of Gold Nanoparticles on Patterned Poly(dimethylsiloxane) Surfaces. Biomacromolecules 2006, 7, 1203–1209. [Google Scholar] [CrossRef]
- Yi, H.; Wu, L.-Q.; Bentley, W.E.; Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Payne, G.F. Biofabrication with chitosan. Biomacromolecules 2005, 6, 2881–2894. [Google Scholar] [CrossRef]
- dos Santos, D.S.; Goulet, P.J.G.; Pieczonka, N.P.W.; Oliveira, O.N.; Aroca, R.F. Gold Nanoparticle Embedded, Self-Sustained Chitosan Films as Substrates for Surface-Enhanced Raman Scattering. Langmuir 2004, 20, 10273–10277. [Google Scholar] [CrossRef]
- Yaqoob, A.; Ahmad, A.; Ibrahim, M.N.M.; Rashid, M. Chitosan-based nanocomposites for gene delivery: Application and future perspectives. In Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering; Woodhead Publishing: Sawston, UK, 2021; pp. 245–262. [Google Scholar]
- Gangadharan, D.; Harshvardan, K.; Gnanasekar, G.; Dixit, D.; Popat, K.M.; Anand, P.S. Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Res. 2010, 44, 5481–5487. [Google Scholar] [CrossRef]
- Huang, K.-S.; Wang, C.-Y.; Yang, C.-H.; Grumezescu, A.; Lin, Y.-S.; Kung, C.-P.; Lin, I.-Y.; Chang, Y.-C.; Weng, W.-J.; Wang, W.-T. Synthesis and Characterization of Oil-Chitosan Composite Spheres. Molecules 2013, 18, 5749–5760. [Google Scholar] [CrossRef] [Green Version]
- Zain, N.M.; Stapley, A.G.F.; Shama, G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr. Polym. 2014, 112, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Akmaz, S.; Dilaver Adıgüzel, E.; Yasar, M.; Erguven, O. The Effect of Ag Content of the Chitosan-Silver Nanoparticle Composite Material on the Structure and Antibacterial Activity. Adv. Mater. Sci. Eng. 2013, 2013, 690918. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, P.; Yaswant, G.; Kavitha, S.; Chandramohan, E.; Kowsalya, G.; Vijay, R.; Sudhagar, B.; Kumar, D.S.R.S. Preparation and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. Int. J. Biol. Macromol. 2019, 141, 290–298. [Google Scholar] [CrossRef]
- Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001, 1, 515–519. [Google Scholar] [CrossRef]
- Ali, D.M.; Sasikala, M.; Gunasekaran, M.; Thajuddin, N. Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig. J. Nanomater. Biostruct. 2011, 6, 385–390. [Google Scholar]
- Stebounova, L.V.; Adamcakova-Dodd, A.; Kim, J.S.; Park, H.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre Toxicol. 2011, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.C.; Wang, C.I.; Sye, W.F. Applications of chitosan beads and porous crab shell powder for the removal of 17 organochlorine pesticides (OCPs) in water solution. Carbohydr. Polym. 2011, 83, 1984–1989. [Google Scholar] [CrossRef]
- Vimala, K.; Mohan, Y.M.; Sivudu, K.S.; Varaprasad, K.; Ravindra, S.; Reddy, N.N.; Padma, Y.; Sreedhar, B.; MohanaRaju, K. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids Surf. B Biointerfaces 2010, 76, 248–258. [Google Scholar] [CrossRef]
- Hanaor, D.; Michelazzi, M.; Leonelli, C.; Sorrell, C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 2012, 32, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Dixit, C.K. Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Elsevier: New York, NY, USA, 2017; pp. 43–58. [Google Scholar]
- Badran, M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig. J. Nanomater. Biostruct. 2014, 9, 83–91. [Google Scholar]
- Putri, D.C.A.; Dwiastuti, R.; Marchaban, M.; Nugroho, A.K. Optimasi Suhu Pencampuran Dan Durasi Sonikasi Dalam Pembuatan Liposom. J. Farm. Sains Dan Komunitas 2017, 14, 79–85. [Google Scholar]
- Clarke, S.P. Development of Hierarchical Magnetic Nanocomposite Materials for Biomedical Applications. Ph.D. Thesis, Dublin City University, Dublin, Ireland, 2013. [Google Scholar]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef]
- Poon, V.K.M.; Burd, A. In vitro cytotoxity of silver: Implication for clinical wound care. Burns 2004, 30, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.; Geszke-Moritz, M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 2013, 228, 596–613. [Google Scholar] [CrossRef]
NaOH [%] | Reactants (grams) | Products (grams) | Percentage Yield (%) |
---|---|---|---|
20 | 1.455 ± 0.067 | 127.96 ± 0.520 | 1.17 ± 0.057 |
30 | 3.238 ± 0.057 | 247.92 ± 1.430 | 1.30 ± 0.015 |
40 | 1.955 ± 0.060 | 247.92 ± 0.198 | 0.80 ± 0.024 |
50 | 1.150 ± 0.070 | 247.92 ± 0.050 | 0.50 ± 0.028 |
Product | NaOH Concentration [%] | Reactants (gram) | Product (gram ± SD) | Yield (% ± SD) |
---|---|---|---|---|
A | 20 | 167.46 | 0.875 ± 0.007 | 0.52 ± 0.005 |
B | 30 | 167.46 | 0.749 ± 0.065 | 0.47 ± 0.020 |
C | 40 | 167.46 | 0.916 ± 0.009 | 0.54 ± 0.001 |
D | 50 | 167.46 | 0.930 ± 0.014 | 0.55 ± 0.012 |
Reducing Agent | Average Diameter ± SD (nm) |
---|---|
NaOH 20% | 46.91 ± 1.50 |
NaOH 30% | 58.36 ± 1.70 |
NaOH 40% | 73.92 ± 1.80 |
NaOH 50% | 77.81 ± 1.80 |
No. | Reducing Agent | Zeta Potensial (mV ± SD) | Polydisperity Index (PdI ± SD) |
---|---|---|---|
1. | NaOH 20% | 33.6 ± 0.70 | 0.171 ± 0.05 |
2. | NaOH 30% | 47.2 ± 0.07 | 0.256 ± 0.01 |
3. | NaOH 40% | 52.3 ± 0.70 | 0.249 ± 0.03 |
4. | NaOH 50% | 36.0 ± 1.27 | 0.323 ± 0.02 |
No. | Tested Microorganisms | AgNP-Chi-Spheres (in % NaOH) | Inhibition Zone Diameter (mm ± SD) |
---|---|---|---|
1. | S. aureus | Amoxicillin 0.50% (C+) | 30.22 ± 0.020 |
20 | 15.40 ± 0.015 | ||
30 | 11.51 ± 0.015 | ||
40 | 16.55 ± 0.015 | ||
50 | 19.51 ± 0.015 | ||
2. | E. coli | Ciprofloxasin 0.25% (C+) | 23.55 ± 0.020 |
20 | 12.86 ± 0.015 | ||
30 | 10.68 ± 0.015 | ||
40 | 16.05 ± 0.017 | ||
50 | 18.56 ± 0.017 | ||
3. | C. albicans | Ketoconazole 0.20% (C+) | 24.87 ± 0.020 |
20 | 10.27 ± 0.026 | ||
30 | 10.13 ± 0.020 | ||
40 | 11.16 ± 0.015 | ||
50 | 12.25 ± 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirda, E.; Idroes, R.; Khairan, K.; Tallei, T.E.; Ramli, M.; Earlia, N.; Maulana, A.; Idroes, G.M.; Muslem, M.; Jalil, Z. Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities . Polymers 2021, 13, 3990. https://doi.org/10.3390/polym13223990
Mirda E, Idroes R, Khairan K, Tallei TE, Ramli M, Earlia N, Maulana A, Idroes GM, Muslem M, Jalil Z. Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities . Polymers. 2021; 13(22):3990. https://doi.org/10.3390/polym13223990
Chicago/Turabian StyleMirda, Erisna, Rinaldi Idroes, Khairan Khairan, Trina Ekawati Tallei, Muliadi Ramli, Nanda Earlia, Aga Maulana, Ghazi Mauer Idroes, Muslem Muslem, and Zulkarnain Jalil. 2021. "Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities " Polymers 13, no. 22: 3990. https://doi.org/10.3390/polym13223990
APA StyleMirda, E., Idroes, R., Khairan, K., Tallei, T. E., Ramli, M., Earlia, N., Maulana, A., Idroes, G. M., Muslem, M., & Jalil, Z. (2021). Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities . Polymers, 13(22), 3990. https://doi.org/10.3390/polym13223990