Carbon-Doping as Efficient Strategy for Improving Photocatalytic Activity of Polysilicon Supported Pd in Hydrogen Evolution from Formic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Pd@C-PS
2.2. Determination of Pd on Pd@C-PS Using Flame AAS
2.3. Typical Procedure for the FA Degradation
3. Results and Discussion
3.1. Characterization of the Synthesized Materials
3.2. Investigation of the Photocatalytic Activity of Pd@C-PS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Othman, M.F.; Adam, A.; Najafi, G.; Mamat, R. Green fuel as alternative fuel for diesel engine: A review. Renew. Sustain. Energy Rev. 2017, 80, 694–709. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Cardoso, J.A.S.B.; Šljukić, B.; Erdem, M.; Sequeira, C.A.C.; Santos, D.M.F. Vine Shoots and Grape Stalks as Carbon Sources for Hydrogen Evolution Reaction Electrocatalyst Supports. Catalysts 2018, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Alex, C.; Bhat, S.A.; John, N.S.; Yelamaggad, C.V. Highly Efficient and Sustained Electrochemical Hydrogen Evolution by Embedded Pd-Nanoparticles on a Coordination Polymer—Reduced Graphene Oxide Composite. ACS Appl. Energy Mater. 2019, 2, 8098–8106. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Ping, Y.; Jiang, Q. Au@Pd core–shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. J. Mater. Chem. A 2013, 1, 12721–12725. [Google Scholar] [CrossRef]
- Chen, J.; Mei, L.; Liu, J.; Zhong, C.; Yuan, B.; Li, Q. Microwave-assisted iodine-catalyzed oxidative coupling of dibenzyl(difurfuryl)disulfides with amines: A rapid and efficient protocol for thioamides. RSC Adv. 2019, 9, 28576–28580. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Zhu, Y.; Song, X.; Zheng, X.; Liu, P. Magnetic graphene oxide-ionic liquid grafted chitosan composites anchored Pd(0) nanoparticles: A robust heterogeneous catalyst with enhanced activity and superior reusability for hydrogen generation from ammonia borane. Int. J. Hydrogen Energy 2018, 43, 19939–19946. [Google Scholar] [CrossRef]
- Sayed, F.N.; Sasikala, R.; Jayakumar, O.D.; Rao, R.; Betty, C.A.; Chokkalingam, A.; Kadam, R.M.; Jagannath, J.; Bharadwaj, S.R.; Vinu, A.; et al. Photocatalytic hydrogen generation from water using a hybrid of graphene nanoplatelets and self doped TiO2–Pd. RSC Adv. 2014, 4, 13469–13476. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Xiang, F.; Fratalocchi, A. Silicon-Based Photocatalysis for Green Chemical Fuels and Carbon Negative Technologies. Adv. Sustain. Syst. 2021, 5, 2000242. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Wang, S.; Shao, W.; Qin, W.; Zhao, X.; Kong, F. Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications. Ind. Crop. Prod. 2020, 151, 112490. [Google Scholar] [CrossRef]
- Han, L.M.; Pan, J.-S.; Chen, S.-M.; Balasubramanian, N.; Shi, J.; Wong, L.S.; Foo, P.D. Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane. J. Electrochem. Soc. 2001, 148, F148–F153. [Google Scholar] [CrossRef]
- Sikder, A.K.; Kumar, A.; Thagella, S.; Yota, J. Effects of Properties and Growth Parameters of Doped and Undoped Silicon Oxide Films on Wear Behavior During Chemical Mechanical Planarization Process. J. Mater. Res. 2004, 19, 996–1010. [Google Scholar] [CrossRef]
- Lubguban, J., Jr.; Kurata, Y.; Inokuma, T.; Hasegawa, S. Thermal stability and breakdown strength of carbon-doped SiO2:F films prepared by plasma-enhanced chemical vapor deposition method. J. Appl. Phys. 2000, 87, 3715–3722. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Wang, Y.; Fu, S. Formation of C-doped SiO2 coatings on carbon fibers by the sol-dipping process. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123700. [Google Scholar] [CrossRef]
- Zhao, L.; Barbarin, Y.; Croes, K.; Baklanov, M.R.; Verdonck, P.; Tőkei, Z.; Claeys, C. Impact of carbon-doping on time dependent dielectric breakdown of SiO2-based films. Appl. Phys. Lett. 2015, 106, 072902. [Google Scholar] [CrossRef]
- van Druenen, M.; Collins, G.; Glynn, C.; O’Dwyer, C.; Holmes, J.D. Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination. ACS Appl. Mater. Interfaces 2018, 10, 2191–2201. [Google Scholar] [CrossRef]
- Mungondori, H.H.; Tichagwa, L. Photo-Catalytic Activity of Carbon/Nitrogen Doped TiO2-SiO2 under UV and Visible Light Irradiation. Mater. Sci. Forum 2012, 734, 226–236. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Zhou, B.; Hong, Y.; Li, S.; Wen, W. Efficient photocatalytic activity with carbon-doped SiO2 nanoparticles. Nanoscale 2013, 5, 6167–6172. [Google Scholar] [CrossRef]
- Xue, Q.; Ma, M.; Zhen, Y.; Zhou, X.; Wang, S. Large photoconductivity of Pd doped amorphous carbon film/SiO2/Si. Diam. Relat. Mater. 2012, 21, 24–27. [Google Scholar] [CrossRef]
- Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. Electrocatalysis on Shape-Controlled Palladium Nanocrystals: Oxygen Reduction Reaction and Formic Acid Oxidation. J. Phys. Chem. C 2013, 117, 4172–4180. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Beloshapkin, S.; Ross, J.R.H. Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal. Today 2010, 154, 7–12. [Google Scholar] [CrossRef]
- Eppinger, J.; Huang, K.-W. Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2017, 2, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.-S.; Song, J.; Song, M.; Goo, B.S.; Lee, Y.W.; Kim, Y.; Yang, H.; Han, S.W. Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2019, 9, 819–826. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Patnaik, S.; Rath, D.; Mohapatra, P.; Mohanty, A.; Parida, K. Influence of Au/Pd alloy on an amine functionalised ZnCr LDH–MCM-41 nanocomposite: A visible light sensitive photocatalyst towards one-pot imine synthesis. Catal. Sci. Technol. 2019, 9, 2493–2513. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kobayashi, H.; Kusada, K.; Taylor, J.M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal–organic framework under hydrogen gas. Chem. Commun. 2014, 50, 13750–13753. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Yan, J.-M.; Ping, Y.; Wang, H.-L.; Zheng, W.-T.; Jiang, Q. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. Angew. Chem. Int. Ed. 2013, 52, 4406–4409. [Google Scholar] [CrossRef] [PubMed]
- Yurderi, M.; Bulut, A.; Zahmakiran, M.; Kaya, M. Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition. Appl. Catal. B Environ. 2014, 160–161, 514–524. [Google Scholar] [CrossRef]
- Arenz, M.; Stamenkovic, V.; Schmidt, T.J.; Wandelt, K.; Ross, P.N.; Markovic, N.M. The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Phys. Chem. Chem. Phys. 2003, 5, 4242–4251. [Google Scholar] [CrossRef]
- Yurderi, M.; Bulut, A.; Caner, N.; Celebi, M.; Kaya, M.; Zahmakiran, M. Amine grafted silica supported CrAuPd alloy nanoparticles: Superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid. Chem. Commun. 2015, 51, 11417–11420. [Google Scholar] [CrossRef]
- Colmati, F.; Antolini, E.; Gonzalez, E.R. Pt–Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochim. Acta 2005, 50, 5496–5503. [Google Scholar] [CrossRef]
- Jeroro, E.; Vohs, J.M. Reaction of Formic Acid on Zn-Modified Pd(111). Catal. Lett. 2009, 130, 271–277. [Google Scholar] [CrossRef]
- Choi, J.-H.; Jeong, K.J.; Dong, Y.; Han, J.; Lim, T.; Lee, J.-S.; Sung, Y. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 2006, 163, 71–75. [Google Scholar] [CrossRef]
- Koh, K.; Jeon, M.; Yoon, C.W.; Asefa, T. Formic acid dehydrogenation over Pd NPs supported on amine-functionalized SBA-15 catalysts: Structure–activity relationships. J. Mater. Chem. A 2017, 5, 16150–16161. [Google Scholar] [CrossRef]
- Jin, M.-H.; Park, J.-H.; Oh, D.; Park, J.-S.; Lee, K.-Y.; Lee, D.-W. Effect of the amine group content on catalytic activity and stability of mesoporous silica supported Pd catalysts for additive-free formic acid dehydrogenation at room temperature. Int. J. Hydrogen Energy 2019, 44, 4737–4744. [Google Scholar] [CrossRef]
- Farajzadeh, M.; Alamgholiloo, H.; Nasibipour, F.; Banaei, R.; Rostamnia, S. Anchoring Pd-nanoparticles on dithiocarbamate- functionalized SBA-15 for hydrogen generation from formic acid. Sci. Rep. 2020, 10, 18188. [Google Scholar] [CrossRef]
- Jin, M.-H.; Oh, D.; Park, J.-H.; Lee, C.-B.; Lee, S.-W.; Park, J.-S.; Lee, K.-Y.; Lee, D.-W. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition. Sci. Rep. 2016, 6, 33502. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, A.K.; Tsumori, N.; Xu, Q. Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage. J. Mater. Chem. 2012, 22, 19146–19150. [Google Scholar] [CrossRef]
- Al-Azmi, A.; Keshipour, S. Dimaval as an efficient ligand for binding Ru(III) on cross-linked chitosan aerogel: Synthesis, characterisation and catalytic investigation. Cellulose 2020, 27, 895–904. [Google Scholar] [CrossRef]
- Keshipour, S.; Al-Azmi, A. Synthesis and catalytic application of Pd/PdO/Fe3O4@polymer-like graphene quantum dots. Appl. Organomet. Chem. 2020, 34, e5311. [Google Scholar] [CrossRef]
- Al-Azmi, A.; Keshipour, S. Cross-linked chitosan aerogel modified with Pd(II)/phthalocyanine: Synthesis, characterization, and catalytic application. Sci. Rep. 2019, 9, 13849. [Google Scholar] [CrossRef] [Green Version]
- Keshipour, S.; Mohammad-Alizadeh, S. Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Sci. Rep. 2021, 11, 16148. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Keshipour, S.; Ahour, F. New water-soluble colorimetric pH and metal ione sensor based on graphene quantum dot modified with alizarine red S. Sci. Rep. 2020, 10, 14185. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, Z.H. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature. Phys. Chem. Chem. Phys. 2016, 18, 10005–10017. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, I.F.; Quiroz, J.; Homsi, M.S.; Camargo, P.H.C. An Overview of the Photocatalytic H2 Evolution by Semiconductor-Based Materials for Nonspecialists. J. Braz. Chem. Soc. 2020, 31, 211–229. [Google Scholar] [CrossRef]
- Miriam, N.G.; Kohsuke, M.; David, S.T.; Yasutaka, K.; Hiromi, Y. New Approaches Toward the Hydrogen Production From Formic Acid Dehydrogenation Over Pd-Based Heterogeneous Catalysts. Front. Mater. 2019, 6, 44. [Google Scholar]
- Li, K.-M.; Jiang, J.-G.; Tian, S.-C.; Chen, X.-J.; Yan, F. Influence of Silica Types on Synthesis and Performance of Amine–Silica Hybrid Materials Used for CO2 Capture. J. Phys. Chem. C 2014, 118, 2454–2462. [Google Scholar] [CrossRef]
- Parida, B.; Choi, J.; Lim, G.; Kim, K.; Kim, K. Enhanced Visible Light Absorption by 3C-SiC Nanoparticles Embedded in Si Solar Cells by Plasma-Enhanced Chemical Vapor Deposition. J. Nanomater. 2013, 2013, 953790. [Google Scholar] [CrossRef]
- Rafigh, S.M.; Heidarinasab, A. Mesoporous Chitosan–SiO2 Nanoparticles: Synthesis, Characterization, and CO2 Adsorption Capacity. ACS Sustain. Chem. Eng. 2017, 5, 10379–10386. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Azmi, A.; Keshipour, S. Carbon-Doping as Efficient Strategy for Improving Photocatalytic Activity of Polysilicon Supported Pd in Hydrogen Evolution from Formic Acid. Polymers 2021, 13, 3919. https://doi.org/10.3390/polym13223919
Al-Azmi A, Keshipour S. Carbon-Doping as Efficient Strategy for Improving Photocatalytic Activity of Polysilicon Supported Pd in Hydrogen Evolution from Formic Acid. Polymers. 2021; 13(22):3919. https://doi.org/10.3390/polym13223919
Chicago/Turabian StyleAl-Azmi, Amal, and Sajjad Keshipour. 2021. "Carbon-Doping as Efficient Strategy for Improving Photocatalytic Activity of Polysilicon Supported Pd in Hydrogen Evolution from Formic Acid" Polymers 13, no. 22: 3919. https://doi.org/10.3390/polym13223919
APA StyleAl-Azmi, A., & Keshipour, S. (2021). Carbon-Doping as Efficient Strategy for Improving Photocatalytic Activity of Polysilicon Supported Pd in Hydrogen Evolution from Formic Acid. Polymers, 13(22), 3919. https://doi.org/10.3390/polym13223919