Preparation and Chemical and Physical Characteristics of an Edible Film Based on Native Potato Starch and Nopal Mucilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Nopal Mucilage and Starch Extraction
2.3. Formulation of Edible Films
2.4. Determination of Solubility and Resistance to Solvents
2.5. Determination of Water Activity (aw)
2.6. FTIR Analysis
2.7. Thermal Analysis
2.8. SEM Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Solubility and Resistance to Solvents
3.2. Water Activity
3.3. FTIR Analysis
3.4. Thermal Analysis
3.5. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; Rios, A.D.O.; Flôres, S.H. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym. 2015, 130, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Romero-Bastida, C.A.; Zamudio-Flores, P.B.; Bello-Pérez, L.A. Antimicrobianos en películas de almidón oxidado de plátano: Efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Rev. Mex. Ing. Quím. 2011, 10, 445–453. [Google Scholar]
- Fernández, D.; Bautista, S.; Fernández, D.; Ocampo, A.; García, A.; Falcón, A. Eatable films and coverings: A favorable alternative in the postharvesIng. conservation of fruits and vegetables. Rev. Cienc. Téc. Agropecu. 2015, 24, 52–57. [Google Scholar]
- Espino-Díaz, M.; Ornelas-Paz, J.D.J.; Martínez-Téllez, M.A.; Santillán, C.; Barbosa-Cánovas, G.V.; Zamudio-Flores, P.B.; Olivas, G.I. Development and Characterization of Edible Films Based on Mucilage of Opuntia ficus-indica (L.). J. Food Sci. 2010, 75, E347–E352. [Google Scholar] [CrossRef] [PubMed]
- Din, A.; Nadeem, M.; Khan, M.R.; Shabbir, M.A. Development and application of edible skin coatings to improve the quality of kinnow during storage. Acta Sci. Technol. 2015, 37, 111. [Google Scholar] [CrossRef] [Green Version]
- Guldas, M.; Bayizit, A.A.; Yilsay, T.O.; Yilmaz, L. Effects of edible film coatings on shelf-life of mustafakemalpasa sweet, a cheese based dessert. J. Food Sci. Technol. 2010, 47, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Xu, F.; Zong, P.; Zhang, J.; Tian, Y.; Qiao, Y. Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS. Renew. Energy 2019, 132, 486–496. [Google Scholar] [CrossRef]
- Guadarrama-Lezama, A.Y.; Castaño, J.; Velazquez, G.; Carrillo-Navas, H.; Alvarez-Ramírez, J. Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films. J. Food Sci. Technol. 2018, 55, 3739–3748. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xie, F.; Li, M.; Liu, X.; Yu, L.; Halley, P.J.; Chen, L. Phase transitions of maize starches with different amylose contents in glycerol–water systems. Carbohydr. Polym. 2011, 85, 180–187. [Google Scholar] [CrossRef]
- López-García, F.; Jiménez-Martínez, C.; Guzmán-Lucero, D.; Maciel-Cerda, A.; Delgado-Macuil, R.; Cabrero-Palomino, D.; Terrés-Rojas, E.; Arzate-Vázquez, I. Physical and chemical characterization of a biopolymer film made with corn starch and nopal xoconostle (Opuntia joconsotle) mucilage. Rev. Mex. Ing. Quím. 2017, 16, 147–158. [Google Scholar] [CrossRef]
- Dominguez-Martinez, B.M.; Martínez-Flores, H.E.; Berrios, J.D.J.; Otoni, C.G.; Wood, D.F.; Velazquez, G. Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. J. Polym. Environ. 2016, 25, 683–691. [Google Scholar] [CrossRef]
- Matsuhiro, B.; Lillo, L.E.; Sáenz, C.; Urzúa, C.C.; Zárate, O. Chemical characterization of the mucilage from fruits of Opuntia ficus indica. Carbohydr. Polym. 2006, 63, 263–267. [Google Scholar] [CrossRef]
- Gheribi, R.; Khwaldia, K. Cactus Mucilage for Food Packaging Applications. Coatings 2019, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Medina-Torres, L.; García-Cruz, E.; Calderas, F.; González-Laredo, R.F.; Sanchez-Olivares, G.; Gallegos-Infante, J.; Guzmán, N.E.R.; Rodríguez-Ramírez, J. Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus-indica). LWT 2013, 50, 642–650. [Google Scholar] [CrossRef]
- Del-Valle, V.; Hernández-Muñoz, P.; Guarda, A.; Galotto, M. Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chem. 2005, 91, 751–756. [Google Scholar] [CrossRef]
- Sandoval, D.C.G.; Sosa, B.L.; Martínez-Ávila, G.C.G.; Fuentes, H.R.; Abarca, V.H.A.; Rojas, R. Formulation and Characterization of Edible Films Based on Organic Mucilage from Mexican Opuntia ficus-indica. Coatings 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Diez, C.A.; Lopéz, S.E.; Zavaleta, C.R.; Rodriguez, M.Y.; Huayanay, J.P. Quantification of anti-cancer principles of varieties native potatoe of colored pulp la Libertad region to industrial processing. J. Pueblo Cont. 2013, 24, 425–431. [Google Scholar]
- Martínez, P.; Peña, F.; Bello-Pérez, L.A.; Núñez-Santiago, C.; Yee-Madeira, H.; Velezmoro, C. Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chem. X 2019, 2, 100030. [Google Scholar] [CrossRef] [PubMed]
- Vargas, G.; Martínez, P.; Velezmoro, C. Functional properties of potato (Solanum tuberosum) starch and its chemical modification by acetylation. Sci. Agropecu. 2016, 7, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel-Yamani, B.; Rondan-Sanabria, G.G.; Finardi-Filho, F. The physical, chemical and functional characterization of starches from Andean tubers: Oca (Oxalis tuberosa Molina), olluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz & Pavón). Braz. J. Pharm. Sci. 2013, 49, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Andreuccetti, C.; Galicia-García, T.; Martínez-Bustos, F.; Grosso, R.F.; González-Núñez, R. Effects of Nopal Mucilage (Opuntia ficus-indica) as Plasticizer in the Fabrication of Laminated and Tubular Films of Extruded Acetylated Starches. Int. J. Polym. Sci. 2021, 2021, 6638756. [Google Scholar] [CrossRef]
- Galindez, A.; Daza, L.D.; Homez-Jara, A.; Eim, V.S.; Váquiro, H.A. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr. Polym. 2019, 215, 143–150. [Google Scholar] [CrossRef]
- Damas, M.S.P.; Junior, V.A.P.; Nishihora, R.K.; Quadri, M.G.N. Edible films from mucilage of C ereus hildmannianus fruits: Development and characterization. J. Appl. Polym. Sci. 2017, 134, 45223. [Google Scholar] [CrossRef]
- Sandhu, K.; Singh, N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2007, 101, 1499–1507. [Google Scholar] [CrossRef]
- Ayquipa-Cuellar, E.; Salcedo-Sucasaca, L.; Azamar-Barrios, J.A.; Chaquilla-Quilca, G. Assessment of Prickly Pear Peel Mucilage and Potato Husk Starch for Edible Films Production for Food Packaging Industries. Waste Biomass-Valorization 2021, 12, 321–331. [Google Scholar] [CrossRef]
- Turhan, K.; Şahbaz, F. Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J. Food Eng. 2004, 61, 459–466. [Google Scholar] [CrossRef]
- Rodríguez, M.; Osés, J.; Ziani, K.; Maté, J.I. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res. Int. 2006, 39, 840–846. [Google Scholar] [CrossRef]
- Mendoza, B.; Hernandez, E.M.; Romo, L.D.; Vargas, A.; Cervantes, J.A.; Fernandez, A.G.E. Edible films based on chayotextle starch and its effect on the shelf life of apples. J. Appl. Biotechnol. Bioeng. 2021, 8, 36–40. [Google Scholar] [CrossRef]
- Navia, D.; Ayala, A.; Villada, H.S. Adsorption isotherms of cassava flour bioplastics compression molded. Biotecnol. Sect. Agropecu. Agroind. 2011, 9, 77–87. [Google Scholar]
- Quispe, D.C.; Samanez, C.A.L.; Pacheco, B.S.R.; Taipe-Pardo, F.; Peralta-Guevara, D.E.; Reynoso, A.M.S. Evaluación de las isotermas de sorción de granos y harina de kiwicha (Amaranthus caudatus). Rev。 ION 2018, 31, 67–81. [Google Scholar] [CrossRef]
- Guillard, V.; Broyart, B.; Bonazzi, C.; Guilbert, S.; Gontard, N. Effect of Temperature on Moisture Barrier Efficiency of Monoglyceride Edible Films in Cereal-Based Composite Foods. Cereal Chem. J. 2004, 81, 767–771. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind. Crops Prod. 2011, 33, 229–235. [Google Scholar] [CrossRef]
- Kibar, E.A.A.; Us, F. Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. J. Food Eng. 2013, 114, 123–131. [Google Scholar] [CrossRef]
- Muscat, D.; Adhikari, B.; Chaudhary, D.S. Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. J. Food Eng. 2012, 109, 189–201. [Google Scholar] [CrossRef]
- Shih, F.; Daigle, K.; Champagne, E. Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chem. 2011, 127, 118–121. [Google Scholar] [CrossRef]
- Al-Hassan, A.; Norziah, M. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Tanada-Palmu, P.S.; Grosso, C.R. Development and characterization of edible films based on gluten from semi-hard and soft Brazilian wheat flours (development of films based on gluten from wheat flours). Food Sci. Technol. 2003, 23, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Galus, S.; Turska, A.; Lenart, A. Sorption and wetting properties of pectin edible films. Czech J. Food Sci. 2012, 30, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Basiak, E.; Lenart, A.; Debeaufort, F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Kiefer, J.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lisciani, S.; Marletta, L. Qualitative Analysis of Traditional Italian Dishes: FTIR Approach. Sustainability 2018, 10, 4112. [Google Scholar] [CrossRef] [Green Version]
- Pelissari, F.; Andrade-Mahecha, M.M.; Sobral, P.J.D.A.; Menegalli, F.C. Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch-Starke 2012, 64, 382–391. [Google Scholar] [CrossRef]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behaviour. Food Hydrocoll. 2013, 30, 408–418. [Google Scholar] [CrossRef]
- Nesic, A.; Ružić, J.; Gordic, M.; Ostojic, S.; Micić, D.; Onjia, A. Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials. Compos. Part B Eng. 2017, 110, 56–61. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Tang, M. Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film. Carbohydr. Polym. 2013, 96, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Galicia-García, T.; Martínez-Bustos, F.; Jiménez-Arevalo, O.; Martínez, A.; Ibarra-Gómez, R.; Gaytán-Martínez, M.; Mendoza-Duarte, M. Thermal and microstructural characterization of biodegradable films prepared by extrusion–calendering process. Carbohydr. Polym. 2011, 83, 354–361. [Google Scholar] [CrossRef]
- Arief, V.O.; Trilestari, K.; Sunarso, J.; Indraswati, N.; Ismadji, S. Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies. CLEAN-Soil Air Water 2008, 36, 937–962. [Google Scholar] [CrossRef]
- Seslija, S.; Spasojević, P.; Panić, V.; Dobrzyńska-Mizera, M.; Immirzi, B.; Stevanović, J.; Popović, I. Physico-chemical evaluation of hydrophobically modified pectin derivatives: Step toward application. Int. J. Biol. Macromol. 2018, 113, 924–932. [Google Scholar] [CrossRef]
- López, D.F.; Osorio, O.; Checa, O.E. Propiedades Mecánicas de un Material de Pectina para Revestimiento de Fibras Naturales Utilizadas en Aplicaciones Agrícolas. Inf. Tecnol. 2019, 30, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Herrera, J.D.V.; Aguirre, J.C.L.; Castaño, V.D.Q. Physical-chemical characteristics determination of potato (Solanum phureja Juz. & Bukasov) starch. Acta Agron. 2017, 66, 323–330. [Google Scholar] [CrossRef]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr. Polym. 2019, 206, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yu, J.; Ma, X. Ethanolamine as a novel plasticiser for thermoplastic starch. Polym. Degrad. Stab. 2005, 90, 501–507. [Google Scholar] [CrossRef]
- Adam, A.M.A.; Altalhi, T.A.; El-Megharbel, S.M.; Saad, H.A.; Refat, M.S. Using a Modified Polyamidoamine Fluorescent Dendrimer for Capturing Environment Polluting Metal Ions Zn2+, Cd2+, and Hg2+: Synthesis and Characterizations. Crystals 2021, 11, 92. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Velazquez, G.; Gutiérrez, M.C.; Castro-Rosas, J.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. Starch-Starke 2020, 72, 1900282. [Google Scholar] [CrossRef]
- Alarcon, R.T.; Holanda, B.B.D.C.; De Oliveira, A.R.; Magdalena, A.G.; Bannach, G. Production and Characterization of the New Thermoplastic Polymer by Linseed Oil and Glycerol Following Green Chemistry Principles. Rev. Virtual Quím. 2017, 9, 163–175. [Google Scholar] [CrossRef]
- Niu, X.; Ma, Q.; Li, S.; Wang, W.; Ma, Y.; Zhao, H.; Sun, J.; Wang, J. Preparation and Characterization of Biodegradable Composited Films Based on Potato Starch/Glycerol/Gelatin. J. Food Qual. 2021, 2021, 6633711. [Google Scholar] [CrossRef]
- Dries, D.; Gomand, S.; Goderis, B.; Delcour, J. Structural and thermal transitions during the conversion from native to granular cold-water swelling maize starch. Carbohydr. Polym. 2014, 114, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Gheribi, R.; Puchot, L.; Verge, P.; Jaoued-Grayaa, N.; Mezni, M.; Habibi, Y.; Khwaldia, K. Development of plasticized edible films from Opuntia ficus-indica mucilage: A comparative study of various polyol plasticizers. Carbohydr. Polym. 2018, 190, 204–211. [Google Scholar] [CrossRef]
- Sepúlveda, E.; Sáenz, C.; Aliaga, E.; Aceituno, C. Extraction and characterization of mucilage in Opuntia spp. J. Arid. Environ. 2007, 68, 534–545. [Google Scholar] [CrossRef]
- Andreuccetti, C.; Carvalho, R.A.; Galicia-García, T.; Martinez-Bustos, F.; González-Núñez, R.; Grosso, C.R. Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: A preliminary study. J. Food Eng. 2012, 113, 33–40. [Google Scholar] [CrossRef]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 2014, 159, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Tapia, M.S.; Pérez, E.; Famá, L. Edible films based on native and phosphated 80:20 waxy: Normal corn starch. Starch-Starke 2015, 67, 90–97. [Google Scholar] [CrossRef]
- Zhao, Q.; Dong, B.; Chen, J.; Zhao, B.; Wang, X.; Wang, L.; Zha, S.; Wang, Y.; Zhang, J.; Wang, Y. Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydr. Polym. 2015, 127, 176–181. [Google Scholar] [CrossRef]
- Luna-Sosa, B.; Martínez-Ávila, G.C.G.; Rodríguez-Fuentes, H.; Azevedo, A.G.; Pastrana, L.M.; Rojas, R.; Cerqueira, M. Pectin-Based Films Loaded with Hydroponic Nopal Mucilages: Development and Physicochemical Characterization. Coatings 2020, 10, 467. [Google Scholar] [CrossRef]
Formulation | S (%) | M (%) | G (%) | T (°C) |
---|---|---|---|---|
F1.50 | 94 | 3 | 3 | 50 |
F1.60 | 94 | 3 | 3 | 60 |
F1.70 | 94 | 3 | 3 | 70 |
F2.50 | 91 | 4 | 5 | 50 |
F2.60 | 91 | 4 | 5 | 60 |
F2.70 | 91 | 4 | 5 | 70 |
F3.50 | 93 | 5 | 2 | 50 |
F3.60 | 93 | 5 | 2 | 60 |
F3.70 | 93 | 5 | 2 | 70 |
F4.50 | 90 | 5 | 5 | 50 |
F4.60 | 90 | 5 | 5 | 60 |
F4.70 | 90 | 5 | 5 | 70 |
Basic Medium (pH = 8.7) | Acidic Medium (pH = 4.7) | Ultrapure Water (pH = 7.0) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
± | s | * | ± | s | * | ± | s | * | ||||
F1.50 | 35.92 | ± | 1.03 | d | 34.46 | ± | 0.74 | d | 34.96 | ± | 0.50 | d |
F1.60 | 40.36 | ± | 0.47 | e | 40.69 | ± | 0.89 | d,e | 38.15 | ± | 0.96 | e |
F1.70 | 40.42 | ± | 0.62 | a,b | 39.17 | ± | 1.03 | b | 38.51 | ± | 0.18 | b |
F2.50 | 26.87 | ± | 1.72 | c | 23.01 | ± | 1.15 | c | 19.77 | ± | 2.03 | c,d |
F2.60 | 29.30 | ± | 0.56 | e | 31.29 | ± | 0.78 | e,f | 27.75 | ± | 0.65 | e |
F2.70 | 29.67 | ± | 0.34 | f | 28.85 | ± | 0.38 | g | 28.54 | ± | 1.51 | f |
F3.50 | 47.87 | ± | 1.60 | c | 48.43 | ± | 2.37 | c | 50.19 | ± | 1.93 | c |
F3.60 | 51.65 | ± | 1.45 | b | 54.08 | ± | 3.69 | b | 53.03 | ± | 0.54 | a,b |
F3.70 | 50.71 | ± | 0.77 | e | 48.63 | ± | 1.29 | d,e | 48.02 | ± | 1.27 | e |
F4.50 | 24.03 | ± | 1.68 | e,f | 21.96 | ± | 0.67 | g | 22.41 | ± | 0.72 | f |
F4.60 | 28.34 | ± | 1.20 | a | 30.31 | ± | 1.33 | a | 26.31 | ± | 0.66 | a |
F4.70 | 28.57 | ± | 1.54 | e | 24.72 | ± | 1.57 | f,g | 27.46 | ± | 1.49 | e |
HCl * (0.01 M) | CH3COOH ** (0.01 M) | NaOH *** (0.01M) | Ethanol | Ether | Ultrapure Water | |
---|---|---|---|---|---|---|
F1.50 | MS | MS | MS | NS | NS | MS |
F1.60 | HS | HS | MS | NS | NS | MS |
F1.70 | HS | HS | MS | NS | NS | MS |
F2.50 | MS | MS | MS | NS | NS | LS |
F2.60 | MS | MS | MS | NS | NS | MS |
F2.70 | MS | MS | MS | NS | NS | MS |
F3.50 | HS | HS | HS | NS | NS | HS |
F3.60 | HS | HS | HS | NS | NS | HS |
F3.70 | HS | HS | HS | NS | NS | HS |
F4.50 | MS | MS | MS | NS | NS | MS |
F4.60 | MS | MS | MS | NS | NS | MS |
F4.70 | MS | MS | MS | NS | NS | MS |
Formulation | aw | * | ||
---|---|---|---|---|
F1.50 | 0.578 | ± | 0.007 | d |
F1.60 | 0.619 | ± | 0.002 | b |
F1.70 | 0.596 | ± | 0.005 | c |
F2.50 | 0.613 | ± | 0.005 | b |
F2.60 | 0.576 | ± | 0.004 | d |
F2.70 | 0.586 | ± | 0.003 | c,d |
F3.50 | 0.562 | ± | 0.006 | e |
F3.60 | 0.639 | ± | 0.003 | a |
F3.70 | 0.615 | ± | 0.002 | b |
F4.50 | 0.580 | ± | 0.007 | d |
F4.60 | 0.573 | ± | 0.002 | d,e |
F4.70 | 0.580 | ± | 0.002 | d |
Wavenumber (cm−1) | Functional Group | Vibration Type | Compound Type | Present in |
---|---|---|---|---|
3390 | –NH y –OH | Stretching | Alcohols, secondary amide, and carboxylic acids | All formulations, starch, and mucilage |
2930 | –CH2– | Asymmetric stretching | Methylene groups | All formulations, starch, and mucilage |
1650 | –OH, C=O | Bending, stretching | Water, amide | F2.50, F2.60, F2.70, F3.50, F3.60, F3.70, F4.50, F4.60, F4.70, starch, and mucilage |
1410 | –OH, C–O | Stretching | Alcohols | F2.50, F2.60, F2.70, F3.50, F3.60, F3.70, F4.50, F4.60, F4.70, starch and mucilage |
1150 | C–O–C | Stretching | Ether | All formulations, starch, and mucilage |
1030 | C–O | Stretching | Alcohols | All formulations, starch, and mucilage |
925 | –OH out of plane | Deformation | Carboxylic acids | All formulations, and starch |
855 | –CH2– | Deformation | Methylene groups | All formulations, starch, and mucilage |
756 | C–O–C | Stretching | Ether | All formulations, starch, and mucilage |
First Stage | Second Stage | Third Stage | Residue (%) | Max. Weight Loss (%) | ||||
---|---|---|---|---|---|---|---|---|
Weight Loss (%) | T (°C) | Weight Loss (%) | T (°C) | Weight Loss (%) | T (°C) | |||
Starch | 12.0 | 103.6 | 42.9 | 299.2 | 41.8 | 526.8 | 3.2 | 96.8 |
Mucilage | 11.2 | 240.4 | 25.3 | 307.7 | 12.8 | 427.3 | 50.7 | 49.3 |
F1.50 | 16.1 | 91.4 | 41.3 | 226.9 | 27.9 | 313.5 | 14.8 | 85.2 |
F1.60 | 8.6 | 92.4 | 29.8 | 206.1 | 34.4 | 312.1 | 27.2 | 72.8 |
F1.70 | 11.1 | 80.8 | 40.0 | 215.4 | 26.2 | 313.9 | 22.7 | 77.3 |
F2.50 | 18.2 | 90.8 | 31.4 | 218.2 | 36.5 | 316.2 | 13.9 | 86.1 |
F2.60 | 15.2 | 102.8 | 41.6 | 229.6 | 24.6 | 321.1 | 18.7 | 81.3 |
F2.70 | 14.7 | 103.6 | 43.0 | 212.8 | 26.4 | 314.1 | 15.9 | 84.1 |
F3.50 | 13.8 | 92.9 | 36.5 | 236.8 | 28.8 | 319.5 | 20.9 | 79.1 |
F3.60 | 8.2 | 85.2 | 22.2 | 213.2 | 37.5 | 310.9 | 31.2 | 68.8 |
F3.70 | 5.6 | 81.9 | 18.1 | 219.5 | 29.9 | 317.6 | 46.4 | 53.6 |
F4.50 | 14.1 | 116.9 | 31.2 | 216.9 | 34.1 | 314.3 | 20.6 | 79.4 |
F4.60 | 11.8 | 108.3 | 36.5 | 216.1 | 22.4 | 316.4 | 29.3 | 70.7 |
F4.70 | 9.3 | 104.4 | 41.9 | 227.4 | 25.1 | 318.0 | 23.8 | 76.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choque-Quispe, D.; Froehner, S.; Ligarda-Samanez, C.A.; Ramos-Pacheco, B.S.; Palomino-Rincón, H.; Choque-Quispe, Y.; Solano-Reynoso, A.M.; Taipe-Pardo, F.; Zamalloa-Puma, L.M.; Calla-Florez, M.; et al. Preparation and Chemical and Physical Characteristics of an Edible Film Based on Native Potato Starch and Nopal Mucilage. Polymers 2021, 13, 3719. https://doi.org/10.3390/polym13213719
Choque-Quispe D, Froehner S, Ligarda-Samanez CA, Ramos-Pacheco BS, Palomino-Rincón H, Choque-Quispe Y, Solano-Reynoso AM, Taipe-Pardo F, Zamalloa-Puma LM, Calla-Florez M, et al. Preparation and Chemical and Physical Characteristics of an Edible Film Based on Native Potato Starch and Nopal Mucilage. Polymers. 2021; 13(21):3719. https://doi.org/10.3390/polym13213719
Chicago/Turabian StyleChoque-Quispe, David, Sandro Froehner, Carlos A. Ligarda-Samanez, Betsy S. Ramos-Pacheco, Henry Palomino-Rincón, Yudith Choque-Quispe, Aydeé M. Solano-Reynoso, Fredy Taipe-Pardo, Lourdes Magaly Zamalloa-Puma, Miriam Calla-Florez, and et al. 2021. "Preparation and Chemical and Physical Characteristics of an Edible Film Based on Native Potato Starch and Nopal Mucilage" Polymers 13, no. 21: 3719. https://doi.org/10.3390/polym13213719