Surface Treatments of Coffee Husk Fiber Waste for Effective Incorporation into Polymer Biocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Treatments of CHFWs
Chemical Treatment: Mercerization
Physical Treatment: Hydrothermal
Biological Treatment: Solid-State Fermentation by Phanerochaete Chrysosporium
Chemical Characterization
2.2.2. Characterization of CHFWs before and after Treatments
True Density
Fourier Transformed Infrared (FTIR) Spectroscopy
X-ray Diffraction and Morphological Characterization
Thermal Analyses
2.2.3. Manufacturing of Composites Reinforced with CHFW
2.2.4. Mechanical Test Composites
3. Results and Discussion
3.1. Lignocellulosic Characterization and Density of in Natura and Treated Fibers
3.2. Fourier Transformed Infrared (FTIR) Spectroscopy
3.3. X-ray Diffraction (XRD)
3.4. SEM
3.5. TGA and DTG
3.6. Preliminary Analysis of Composites Produced Using Treated Fibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High performances of plant fiber reiforced composites a new insight from hierarchical microstructures. Compos. Sci. Techinol. 2020, 194, 10815. [Google Scholar] [CrossRef]
- Luz, F.S.; Garcia Filho, F.C.; Del-Rio, M.T.C.; Nascimento, L.F.C.; Pinehro, W.A.; Monteiro, S.N. Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview. Polymers 2020, 12, 1601. [Google Scholar] [CrossRef]
- Mokhothu, T.H.; John, M.J. Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydr. Polym. 2015, 131, 337–354. [Google Scholar] [CrossRef]
- Sood, M.; Dwivedi, G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt. J. Pet. 2018, 27, 775–783. [Google Scholar] [CrossRef]
- Sung, S.H.; Chang, Y.; Han, J. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr. Polym. 2017, 169, 495–503. [Google Scholar] [CrossRef]
- CONAB—National Supply Company. Monitoring the Brazilian coffee crop, Brasília, DF, v. 8, 2020/21 crop, no. 2, May. 2021. Available online: www.conab.org.br (accessed on 2 May 2021). (In Portuguese).
- Martinez, C.L.M.; Rocha, E.P.A.; Carneiro, A.D.C.O.; Gomes, F.J.B.; Batalha, L.; Vakkilainen, E.; Cardoso, M. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 2019, 120, 68–76. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Zuorro, A.; Maffei, G.; Lavecchia, R.; Puglia, D.; Dominici, F.; Luzi, F.; Valente, T.; Torre, L. Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind. Crop. Prod. 2018, 118, 311–320. [Google Scholar] [CrossRef]
- Durán, C.A.A.; Tsukui, A.; Dos Santos, F.K.F.; Martinez, S.T.; Bizzo, H.R.; De Rezende, C.M. Coffee: General Aspects and its Use beyond Drink. Revista Virtual de Química 2017, 9, 107–134. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packag. Shelf Life 2019, 22, 100423. [Google Scholar] [CrossRef]
- Huang, L.; Mu, B.; Yi, X.; Li, S.; Wang, Q. Sustainable Use of Coffee Husks for Reinforcing Polyethylene Composites. J. Polym. Environ. 2018, 26, 48–58. [Google Scholar] [CrossRef]
- Ferreira, D.P.; Cruz, J.; Fangueiro, R. Surface modification of natural fibers in polymer composites. In Green Composites for Automotive Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–41. [Google Scholar]
- Rohit, K.; Dixit, S. A Review—Future Aspect of Natural Fiber Reinforced Composite. Polym. Renew. Resour. 2016, 7, 43–59. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 2013, 276, 13–23. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Alias, A.H.; Rushdan, A.I.; Norrrahim, M.N.F.; Abdan, K.; Abdullah, N. Treatments of Natural Fibre as Reinforcement in Polymer Composites-Short Review. Funct. Compos. Struct. 2021, 3, 024002. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Bressler, D.C. Surface and thermal characterization of natural fibres treated with enzymes. Ind. Crop Prod. 2014, 53, 365–373. [Google Scholar] [CrossRef]
- Cragg, S.; Beckham, G.T.; Bruce, N.C.; Bugg, T.D.; Distel, D.; Dupree, P.; Etxabe, A.G.; Goodell, B.S.; Jellison, J.; McGeehan, J.; et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 2015, 29, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbánszki, K.; Szakács, G.; Tengerdy, R.P. Standardization of the filter paper activity assay for solid substrate fermentation. Biotechnol. Lett. 2000, 22, 65–69. [Google Scholar] [CrossRef]
- Brazilian Association of Technical Standards. ABNT NBR 14853: Wood—Determination of Material Soluble in Ethanol-Toluene, Dichloromethane and Acetone; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2010; p. 3. (In Portuguese) [Google Scholar]
- Brazilian Association of Technical Standards. ABNT NBR 7989: Cellulosic Pulp and Wood—Determination of Acid-Insoluble Lignin; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2014; p. 10. (In Portuguese) [Google Scholar]
- Handbook of Wood Chemistry and Wood Composites; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012; p. 703.
- Technical Association of the Pulp and Paper Industry. T 211 OM-02: Ash in wood, pulp, paper and paperboard: Combustion at 525 °C. In Atalanta: Tappi Standard Test Methods; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2002. [Google Scholar]
- Ajouguim, S.; Abdelouahdi, K.; Waqif, M.; Stefanidou, M.; Saâdi, L. Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 2018, 26, 1503–1516. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. Annu. B. ASTM -D3039 Stand. 2014; 1–13. [Google Scholar] [CrossRef]
- Ho, M.-P.; Wang, H.; Lee, J.-H.; Ho, C.-K.; Lau, K.-T.; Leng, J.; Hui, D. Critical factors on manufacturing processes of natural fibre composites. Compos. Part B Eng. 2012, 43, 3549–3562. [Google Scholar] [CrossRef]
- Setter, C.; Silva, F.; Assis, M.; Ataíde, C.; Trugilho, P.; Oliveira, T. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel 2020, 261, 116420. [Google Scholar] [CrossRef]
- Oliveira, F.D.C.; Srinivas, K.; Helms, G.L.; Isern, N.G.; Cort, J.R.; Gonçalves, A.R.; Ahring, B.K. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresour. Technol. 2018, 257, 172–180. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Boix, A.C. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 2018, 191, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.; Gonçalves, A. Oxidized Sugarcane Bagasse and Coffee Husk Lignin as Compatibilizing Agent for Natural Fiber Reinforced Thermoplastic Composites. In Proceedings of the European Biomass Conference and Exhibition Proceedings 21st EUBCE, Kopenhagen, Denmark, 14–17 May 2018; pp. 1570–1577. [Google Scholar] [CrossRef]
- Bartos, A.; Anggono, J.; Farkas, Á.E.; Kun, D.; Soetaredjo, F.E.; Móczó, J.; Antoni, P.H.; Pukánszky, B. Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polym. Test. 2020, 88, 106549. [Google Scholar] [CrossRef]
- Pillai, G.P.; Manimaran, P.; Vignesh, V. Physico-chemical and Mechanical Properties of Alkali-Treated Red Banana Peduncle Fiber. J. Nat. Fibers 2020, 1–10. [Google Scholar] [CrossRef]
- Aguilar, D.L.; Rodríguez-Jasso, R.M.; Zanuso, E.; de Rodríguez, D.J.; Amaya-Delgado, L.; Sanchez, A.; Ruiz, H.A. Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresour. Technol. 2018, 263, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Nitsos, C.; Matsakas, L.; Triantafyllidis, K.; Rova, U.; Christakopoulos, P. Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: Characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production. Biofuels 2017, 9, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Jayapriya, J.; Vigneswaran, C. Process Optimization for Biosoftening of Lignocellulosic Fiber with White Rot Fungi and Specific Enzymatic Systems. J. Nat. Fibers 2010, 7, 17–33. [Google Scholar] [CrossRef]
- Youssef, A.; Hasanin, M.; El-Aziz, M.A.; Darwesh, O. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 2019, 5, e01332. [Google Scholar] [CrossRef] [Green Version]
- Balla, V.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. Part B Eng. 2019, 174, 106956. [Google Scholar] [CrossRef]
- Jayamani, E.; Loong, T.G.; Bin Bakri, M.K. Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polym. Bull. 2019, 77, 1605–1629. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Rajini, N.; Saba, N.; Chandrasekar, M.; Jawaid, M.; Siengchin, S. Effect of Alkali Treatment on Mechanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites. J. Polym. Environ. 2019, 27, 1191–1201. [Google Scholar] [CrossRef]
- Kristensen, J.B.; Thygesen, L.G.; Felby, C.; Jorgensen, H.; Elder, T. Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 2008, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghooneh, A.; Amini, A.M.; Behrouzian, F.; Razavi, S.M.A. Characterisation of cellulose from coffee silverskin. Int. J. Food Prop. 2017, 20, 2830–2843. [Google Scholar] [CrossRef]
- Lee, C.M.; Mittal, A.; Barnette, A.L.; Kafle, K.; Park, Y.B.; Shin, H.; Johnson, D.K.; Park, S.; Kim, S.H. Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: Identification of exocyclic CH2OH conformation and chain orientation. Cellulose 2013, 20, 991–1000. [Google Scholar] [CrossRef]
- Reis, R.S.; Tienne, L.G.; Souza, D.D.H.; Marques, M.D.F.V.; Monteiro, S.N. Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. J. Mater. Res. Technol. 2020, 9, 9412–9421. [Google Scholar] [CrossRef]
- Kallel, F.; Bettaieb, F.; Khiari, R.; García, A.; Bras, J.; Chaabouni, S.E. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crop. Prod. 2016, 87, 287–296. [Google Scholar] [CrossRef]
- Rosa, M.; Medeiros, E.; Malmonge, J.; Gregorski, K.; Wood, D.; Mattoso, L.; Glenn, G.; Orts, W.; Imam, S. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 2010, 81, 83–92. [Google Scholar] [CrossRef]
- Ilyas, R.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. Bioresources 2017, 12, 8734–8754. [Google Scholar] [CrossRef]
- Maradini, G.D.S.; Oliveira, M.P.; Guanaes, G.M.D.S.; Passamani, G.Z.; Carreira, L.G.; Boschetti, W.T.N.; Monteiro, S.N.; Pereira, A.C.; De Oliveira, B.F. Characterization of Polyester Nanocomposites Reinforced with Conifer Fiber Cellulose Nanocrystals. Polymers 2020, 12, 2838. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, A.; Filho, J.A.M.; D’Almeida, J.R. Characterization of Raw and Treated Curaua Fibers to be Applied as Reinforcement in Composites. Mater. Sci. Forum 2012, 730–732, 283–288. [Google Scholar] [CrossRef]
- Qian, S.; Wang, H.; Zarei, E.; Sheng, K. Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Compos. Part B Eng. 2015, 82, 23–29. [Google Scholar] [CrossRef]
- Araya, F.; Troncoso, E.; Mendonça, R.T.; Freer, J. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis ofEucalyptus globuluswood and their relationship with cellulose accessibility. Biotechnol. Bioeng. 2015, 112, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Attard, T.M.; Lukasik, R.M.; Brncic, M.; Lopes, A.M.D.C.; Finell, M.; Geladi, P.; Gerschenson, L.N.; Gogus, F.; Herrero, M.; et al. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 2016, 18, 6160–6204. [Google Scholar] [CrossRef] [Green Version]
- Trajano, H.L.; Engle, N.L.; Foston, M.; Ragauskas, A.J.; Tschaplinski, T.J.; E Wyman, C. The fate of lignin during hydrothermal pretreatment. Biotechnol. Biofuels 2013, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.B.; López-Beceiro, J.; Sanchez, P.; Pascual-Cosp, J. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim. Acta 2014, 581, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Loganathan, T.M.; Sultan, M.T.H.; Ahsan, Q.; Jawaid, M.; Naveen, J.; Shah, A.U.M.; Hua, L.S. Characterization of alkali treated new cellulosic fibre from Cyrtostachys renda. J. Mater. Res. Technol. 2020, 9, 3537–3546. [Google Scholar] [CrossRef]
- Izani, M.N.; Paridah, M.; Anwar, U.; Nor, M.M.; H’Ng, P. Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos. Part B Eng. 2013, 45, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Ale, M.T.; Kołaczkowski, B.; Fernando, D.; Daniel, G.; Meyer, A.S.; Thygesen, A. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Legras, A.; Kondor, A.; Heitzmann, M.T.; Truss, R. Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer–Emmett–Teller specific surface area. J. Chromatogr. A 2015, 1425, 273–279. [Google Scholar] [CrossRef] [Green Version]
Natural Fiber | Matrix | Method | Mechanical Performance |
---|---|---|---|
Alfa fiber | Poly(lactic) acid | Calendaring | Composite material improved 34% of Young’s modulus |
Flax fiber | Thermoplastic polyolefin | Corona surface treatment | Surface treatment induces an increase in elongation by 14% and a decrease in tensile strength and Young’s modulus of about 14% and 21%, respectively |
Sugar palm yarn fiber | Unsaturated polyester | Yarning process | 50 wt.% fiber loading contributed to a decrease in tensile strength by almost 17%, enhanced its tensile modulus by 10% |
Alfa fiber | Poly(lactic) acid | 0.4 M NaOH alkaline treatment | The tensile strength and Young’s modulus of treated 20 wt.% fiber loading improved by 17% and 45%, respectively |
Water hyacinth fibers | Bioepoxy resin | 1% solution of (3-aminopropyl) triethoxysilane silane treatment | Tensile modulus and strength of WHF/epoxy improved by 1.1% and 15.7%, respectively |
Sugar palm fiber | Polyurethane | 2% silane treatment | Tensile strength enhanced by 30% |
Cellulose (%) | Hemicellulose (%) | Lignin (%) | Extractives (%) | Ashes (%) | Density (g/cm3) | |
---|---|---|---|---|---|---|
IN NAT (fresh) | 30.9 ± 1.9 | 28.5 ± 2.4 | 22.2 ± 0.9 | 18.9 ± 1 | 5.4 ± 0.5 | 1.3 ± 0.5 |
NaOH 5 | 50.0 ± 1.8 | 17.6 ± 1 | 22.5 ± 0.5 | 9.9 ± 0.5 | 1.4 ± 0.8 | 1.2 ± 0.5 |
NaOH 10 | 48.9 ± 3.1 | 14.2 ± 2.7 | 24.8 ± 1.2 | 12.1 ± 0.5 | 1.4 ± 0.5 | 1.2 ± 0.5 |
NaOH 20 | 52.8 ± 3.4 | 12.0 ± 1.7 | 25.7 ± 0.9 | 9.5 ± 0.5 | 1.5 ± 0.7 | 1.2 ± 0.5 |
HYD 30 | 35.1 ± 0.5 | 30.3 ± 1.8 | 25.4 ± 2.2 | 9.2 ± 0.5 | 1.6 ± 0.5 | 1.4 ± 0.5 |
HYD 60 | 28.0 ± 2.2 | 35.6 ± 1.6 | 24.7 ± 2.2 | 11.7 ± 0.8 | 1.7 ± 0.5 | 1.5 ± 0.5 |
HYD 120 | 31.1 ± 2.1 | 34.2 ± 2.1 | 23.1 ± 0.5 | 11.6 ± 0.5 | 1.3 ± 0.5 | 1.3 ± 0.5 |
BIO 24 | 38.5 ± 1.0 | 27.1 ± 1.3 | 25.3 ± 1.7 | 9.1 ± 05 | 2.9 ± 0.5 | 1.2 ± 0.5 |
BIO 48 | 38.8 ± 2.9 | 27.2 ± 1.4 | 24.3 ± 0.5 | 9.7 ± 0.5 | 2.1 ± 0.5 | 1.2 ± 0.5 |
BIO 72 | 36.9 ± 1.1 | 26.9 ± 0.7 | 25.7 ± 1.2 | 10.5 ± 0.8 | 2.3 ± 0.5 | 1.2 ± 0.5 |
BIO 96 | 36.7 ± 0.5 | 26.4 ± 0.5 | 26.2 ± 1.0 | 10.7 ± 0.5 | 3.2 ± 0.5 | 1.2 ± 0.5 |
Treatment | Ic (%) |
---|---|
IN NAT (fresh) | 33.04 |
NaOH 5 | 39.22 |
NaOH 10 | 45.09 |
NaOH 20 | 44.19 |
HYD 30 | 41.86 |
HYD 60 | 40.85 |
HYD 120 | 41.01 |
BIO 24 | 44.08 |
BIO 48 | 47.55 |
BIO 72 | 46.82 |
BIO 96 | 38.10 |
Treatment | Tensile Strength (MPa) |
---|---|
IN NAT | 9.9 ± 2 |
NaOH 5 | 9.8 ± 1 |
HDY 30 | 16.3 ± 1 |
BIO 24 | 10.1 ± 1 |
Sum of Squares | df | Mean Square | F | p (same) | |
---|---|---|---|---|---|
Between Groups: | 155.424 | 3 | 51.8079 | 19.97 | 0.0000117 |
Within Groups: | 41.5169 | 16 | 2.59481 | ||
Total: | 196.941 | 19 |
IN NAT | NaOH 5 | HYD 30 | BIO 24 | |
---|---|---|---|---|
In Nat | 0.9997 | 0.000225 | 0.9995 | |
NaOH 5 | 0.1396 | 0.000218 | 0.9964 | |
HYD 30 | 8.942 | 9.082 | 0.000243 | |
BIO 24 | 0.1658 | 0.3054 | 8.776 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, B.M.M.; Camillo, M.d.O.; Oliveira, M.P.; Carreira, L.G.; Moulin, J.C.; Fantuzzi Neto, H.; de Oliveira, B.F.; Pereira, A.C.; Monteiro, S.N. Surface Treatments of Coffee Husk Fiber Waste for Effective Incorporation into Polymer Biocomposites. Polymers 2021, 13, 3428. https://doi.org/10.3390/polym13193428
Gonçalves BMM, Camillo MdO, Oliveira MP, Carreira LG, Moulin JC, Fantuzzi Neto H, de Oliveira BF, Pereira AC, Monteiro SN. Surface Treatments of Coffee Husk Fiber Waste for Effective Incorporation into Polymer Biocomposites. Polymers. 2021; 13(19):3428. https://doi.org/10.3390/polym13193428
Chicago/Turabian StyleGonçalves, Bárbara Maria Mateus, Mayara de Oliveira Camillo, Michel Picanço Oliveira, Lilian Gasparelli Carreira, Jordão Cabral Moulin, Humberto Fantuzzi Neto, Bárbara Ferreira de Oliveira, Artur Camposo Pereira, and Sergio Neves Monteiro. 2021. "Surface Treatments of Coffee Husk Fiber Waste for Effective Incorporation into Polymer Biocomposites" Polymers 13, no. 19: 3428. https://doi.org/10.3390/polym13193428
APA StyleGonçalves, B. M. M., Camillo, M. d. O., Oliveira, M. P., Carreira, L. G., Moulin, J. C., Fantuzzi Neto, H., de Oliveira, B. F., Pereira, A. C., & Monteiro, S. N. (2021). Surface Treatments of Coffee Husk Fiber Waste for Effective Incorporation into Polymer Biocomposites. Polymers, 13(19), 3428. https://doi.org/10.3390/polym13193428