External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- (i).
- “Core build-up” in 2 levels, being one condition where the build-up core was done only using a bulk-fill composite resin (Grandioso X-tra, Voco, Cuxhaven, Germany); or another condition where it was done associating composite resin and a fiber post (Rebilda Post #15, Voco, Cuxhaven, Germany);
- (ii).
- “CAD/CAM blocks” in 3 levels: after core build-up, 3 different CAD/CAM restorative materials were tested: a nanohybrid composite resin (GB, GrandioBlocks, Voco, Cuxhaven, Germany), a flexible hybrid ceramic (CS, Cerasmart 270, GC, Tokyo, Japan), or a zirconia reinforced lithium silicate (CD, Celtra Duo, Dentsply, Konstanz, Germany).
2.2. Specimen Preparation
2.3. Micro-CT Scanning
2.4. Chewing Simulation
2.5. Scanning Electron Microscope Analysis
2.6. Fracture Resistance Test
2.7. Tridimensional Marginal Gap Analysis
2.8. Statistical Analysis
3. Results
3.1. Marginal Gap Variation
3.2. Fracture Resistance
3.3. SEM Qualitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lempel, E.; Lovász, B.V.; Bihari, E.; Krajczár, K.; Jeges, S.; Tóth, Á.; Szalma, J. Long-Term Clinical Evaluation of Direct Resin Composite Restorations in Vital vs. Endodontically Treated Posterior Teeth—Retrospective Study up to 13 Years. Dent. Mater. 2019, 35, 1308–1318. [Google Scholar] [CrossRef]
- Scotti, N.; Eruli, C.; Comba, A.; Paolino, D.S.; Alovisi, M.; Pasqualini, D.; Berutti, E. Longevity of Class 2 Direct Restorations in Root-Filled Teeth: A Retrospective Clinical Study. J. Dent. 2015, 43, 499–505. [Google Scholar] [CrossRef]
- Pasqualini, D.; Scotti, N.; Mollo, L.; Berutti, E.; Angelini, E.; Migliaretti, G.; Cuffini, A.; Adlerstein, D. Microbial Leakage of Gutta-Percha and ResilonTM Root Canal Filling Material: A Comparative Study Using a New Homogeneous Assay for Sequence Detection. J. Biomater. Appl. 2008, 24, 337–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishen, A. Mechanisms and Risk Factors for Fracture Predilection in Endodontically Treated Teeth. Endod. Top. 2006, 13, 57–83. [Google Scholar] [CrossRef]
- Assif, D.; Gorfil, C. Biomechanical Considerations in Restoring Endodontically Treated Teeth. J. Prosthet. Dent. 1994, 71, 565–567. [Google Scholar] [CrossRef]
- Aquilino, S.A.; Caplan, D.J. Relationship between Crown Placement and the Survival of Endodontically Treated Teeth. J. Prosthet. Dent. 2002, 87, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Seow, L.L.; Toh, C.G.; Wilson, N.H.F. Strain Measurements and Fracture Resistance of Endodontically Treated Premolars Restored with All-Ceramic Restorations. J. Dent. 2015, 43, 126–132. [Google Scholar] [CrossRef]
- Edelhoff, D.; Sorensen, J.A. Tooth Structure Removal Associated with Various Preparation Designs for Posterior Teeth. Int. J. Periodont. Restor. Dent. 2002, 22, 241–249. [Google Scholar]
- Mannocci, F.; Cowie, J. Restoration of Endodontically Treated Teeth. Br. Dent. J. 2014, 216, 341–346. [Google Scholar] [CrossRef]
- Rocca, G.T.; Krejci, I. Crown and Post-Free Adhesive Restorations for Endodontically Treated Posterior Teeth: From Direct Composite to Endocrowns. Eur. J. Esthet. Dent. 2013, 8, 156–179. [Google Scholar]
- Scotti, N.; Scansetti, M.; Rota, R.; Pera, F.; Pasqualini, D.; Berutti, E. The Effect of the Post Length and Cusp Coverage on the Cycling and Static Load of Endodontically Treated Maxillary Premolars. Clin. Oral Investig. 2011, 15, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Conrad, H.J.; Seong, W.-J.; Pesun, I.J. Current Ceramic Materials and Systems with Clinical Recommendations: A Systematic Review. J. Prosthet. Dent. 2007, 98, 16. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In Vitro Fatigue Resistance of CAD/CAM Composite Resin and Ceramic Posterior Occlusal Veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef]
- Scotti, N.; Rota, R.; Scansetti, M.; Paolino, D.S.; Chiandussi, G.; Pasqualini, D.; Berutti, E. Influence of Adhesive Techniques on Fracture Resistance of Endodontically Treated Premolars with Various Residual Wall Thicknesses. J. Prosthet. Dent. 2013, 110, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, S.; Rebello de Sampaio, F.B.W.; Braga, M.M.; Sesma, N.; Özcan, M. Survival Rate of Resin and Ceramic Inlays, Onlays, and Overlays: A Systematic Review and Meta-Analysis. J. Dent. Res. 2016, 95, 985–994. [Google Scholar] [CrossRef]
- Akkayan, B.; Gülmez, T. Resistance to Fracture of Endodontically Treated Teeth Restored with Different Post Systems. J. Prosthet. Dent. 2002, 87, 431–437. [Google Scholar] [CrossRef]
- Hürmüzlü, F.; Serper, A.; Siso, S.H.; Er, K. In Vitro Fracture Resistance of Root-Filled Teeth Using New-Generation Dentine Bonding Adhesives. Int. Endod. J. 2003, 36, 770–773. [Google Scholar] [CrossRef]
- Ausiello, P.; Gloria, A.; Maietta, S.; Watts, D.C.; Martorelli, M. Stress Distributions for Hybrid Composite Endodontic Post Designs with and without a Ferrule: FEA Study. Polymers 2020, 12, 1836. [Google Scholar] [CrossRef]
- Kemaloglu, H.; Emin Kaval, M.; Turkun, M.; Micoogullari Kurt, S. Effect of Novel Restoration Techniques on the Fracture Resistance of Teeth Treated Endodontically: An in Vitro Study. Dent. Mater. J. 2015, 34, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Scotti, N.; Baldi, A.; Vergano, E.A.; Tempesta, R.M.; Alovisi, M.; Pasqualini, D.; Carpegna, G.C.; Comba, A. Tridimensional Evaluation of the Interfacial Gap in Deep Cervical Margin Restorations: A Micro-CT Study. Oper. Dent. 2020, 45, E227–E236. [Google Scholar] [CrossRef]
- Comba, A.; Baldi, A.; Saratti, C.M.; Rocca, G.T.; Torres, C.R.G.; Pereira, G.K.R.; Valandro, F.L.; Scotti, N. Could Different Direct Restoration Techniques Affect Interfacial Gap and Fracture Resistance of Endodontically Treated Anterior Teeth? Clin. Oral Investig. 2021, 1–9. [Google Scholar] [CrossRef]
- Belli, S.; Erdemir, A.; Yildirim, C. Reinforcement Effect of Polyethylene Fibre in Root-Filled Teeth: Comparison of Two Restoration Techniques. Int. Endod. J. 2006, 39, 136–142. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Paranhos, M.P.G.; Spohr, A.M.; Oshima, H.M.S.; Carlini, B.; Burnett, L.H. Fracture Resistance of Root Filled Molar Teeth Restored with Glass Fibre Bundles. Int. Endod. J. 2010, 43, 356–362. [Google Scholar] [CrossRef]
- Scotti, N.; Forniglia, A.; Tempesta, R.M.; Comba, A.; Saratti, C.M.; Pasqualini, D.; Alovisi, M.; Berutti, E. Effects of Fiber-Glass-Reinforced Composite Restorations on Fracture Resistance and Failure Mode of Endodontically Treated Molars. J. Dent. 2016, 53, 82–87. [Google Scholar] [CrossRef] [Green Version]
- De Kuijper, M.; Gresnigt, M.; van den Houten, M.; Haumahu, D.; Schepke, U.; Cune, M.S. Fracture Strength of Various Types of Large Direct Composite and Indirect Glass Ceramic Restorations. Oper. Dent. 2019, 44, 433–442. [Google Scholar] [CrossRef]
- Magne, P.; Lazari, P.C.; Carvalho, M.A.; Johnson, T.; Del Bel Cury, A.A. Ferrule-Effect Dominates Over Use of a Fiber Post When Restoring Endodontically Treated Incisors: An In Vitro Study. Oper. Dent. 2017, 42, 396–406. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Martinoff, J.T. Intracoronal Reinforcement and Coronal Coverage: A Study of Endodontically Treated Teeth. J. Prosthet. Dent. 1984, 51, 780–784. [Google Scholar] [CrossRef]
- Vianna, A.L.S.D.V.; Prado, C.J.D.; Bicalho, A.A.; Pereira, R.A.D.S.; Neves, F.D.D.; Soares, C.J. Effect of Cavity Preparation Design and Ceramic Type on the Stress Distribution, Strain and Fracture Resistance of CAD/CAM Onlays in Molars. J. Appl. Oral Sci. 2018, 26, e20180004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotti, N.; Cavalli, G.; Gagliani, M.; Breschi, L. New Adhesives and Bonding Techniques. Why and When? Int. J. Aesthetic Dent. 2017, 12, 524–535. [Google Scholar]
- Abduo, J.; Sambrook, R.J. Longevity of Ceramic Onlays: A Systematic Review. J. Esthet. Restor. Dent. 2018, 30, 193–215. [Google Scholar] [CrossRef]
- Taha, N.A.; Palamara, J.E.A.; Messer, H.H. Cuspal Deflection, Strain and Microleakage of Endodontically Treated Premolar Teeth Restored with Direct Resin Composites. J. Dent. 2009, 37, 724–730. [Google Scholar] [CrossRef]
- Scotti, N.; Tempesta, R.M.; Pasqualini, D.; Baldi, A.; Vergano, E.A.; Baldissara, P.; Alovisi, M.; Comba, A. 3D Interfacial Gap and Fracture Resistance of Endodontically Treated Premolars Restored with Fiber-Reinforced Composites. J. Adhes. Dent. 2020, 22, 215–224. [Google Scholar]
- Gordan, V.V.; Shen, C.; Riley, J.; Mjör, I.A. Two-Year Clinical Evaluation of Repair versus Replacement of Composite Restorations. J. Esthet. Restor. Dent. 2006, 18, 144–153, discussion 154. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K.L. Is Secondary Caries with Composites a Material-Based Problem? Dent. Mater. 2015, 31, e247–e277. [Google Scholar] [CrossRef]
- Zarow, M.; Dominiak, M.; Szczeklik, K.; Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zamarripa-Calderón, J.E.; Kharouf, N.; Filtchev, D. Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies. Polymers 2021, 13, 2251. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.R.; Martins, J.N.R.; Chen, A.; Quaresma, S.A.; Luís, H.; Caramês, J. Prognosis of Indirect Composite Resin Cuspal Coverage on Endodontically Treated Premolars and Molars: An In Vivo Prospective Study. J. Prosthodont. 2018, 27, 598–604. [Google Scholar] [CrossRef]
- Qvist, V. The Effect of Mastication on Marginal Adaptation of Composite Restorations in Vivo. J. Dent. Res. 1983, 62, 904–906. [Google Scholar] [CrossRef] [PubMed]
- De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A Critical Review of the Durability of Adhesion to Tooth Tissue: Methods and Results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Seefeld, F.; Wenz, H.-J.; Ludwig, K.; Kern, M. Resistance to Fracture and Structural Characteristics of Different Fiber Reinforced Post Systems. Dent. Mater. 2007, 23, 265–271. [Google Scholar] [CrossRef]
- Hattori, M.; Takemoto, S.; Yoshinari, M.; Kawada, E.; Oda, Y. Durability of Fiber-Post and Resin Core Build-up Systems. Dent. Mater. J. 2010, 29, 224–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goracci, C.; Ferrari, M. Current Perspectives on Post Systems: A Literature Review. Aust. Dent. J. 2011, 56 (Suppl. 1), 77–83. [Google Scholar] [CrossRef] [PubMed]
- Furtado de Mendonca, A.; Shahmoradi, M.; Gouvêa, C.V.D.D.; De Souza, G.M.; Ellakwa, A. Microstructural and Mechanical Characterization of CAD/CAM Materials for Monolithic Dental Restorations. J. Prosthodont. 2019, 28, e587–e594. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical Properties of Zirconia Reinforced Lithium Silicate Glass-Ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, S.H. Measurement of the Internal Adaptation of Resin Composites Using Micro-CT and Its Correlation with Polymerization Shrinkage. Oper. Dent. 2014, 39, E57–E70. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Alovisi, C.; Comba, A.; Ventura, G.; Pasqualini, D.; Grignolo, F.; Berutti, E. Evaluation of Composite Adaptation to Pulpal Chamber Floor Using Optical Coherence Tomography. J. Endod. 2016, 42, 160–163. [Google Scholar] [CrossRef]
- Roulet, J.F.; Reich, T.; Blunck, U.; Noack, M. Quantitative Margin Analysis in the Scanning Electron Microscope. Scanning Microsc. 1989, 3, 147–158, discussion 158–159. [Google Scholar]
- Ausiello, P.; Ciaramella, S.; Fabianelli, A.; Gloria, A.; Martorelli, M.; Lanzotti, A.; Watts, D.C. Mechanical Behavior of Bulk Direct Composite versus Block Composite and Lithium Disilicate Indirect Class II Restorations by CAD-FEM Modeling. Dent. Mater. 2017, 33, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Griggs, J.A. Effect of Elasticity on Stress Distribution in CAD/CAM Dental Crowns: Glass Ceramic vs. Polymer-Matrix Composite. J. Dent. 2015, 43, 742–749. [Google Scholar] [CrossRef]
- Costa, A.; Xavier, T.; Noritomi, P.; Saavedra, G.; Borges, A. The Influence of Elastic Modulus of Inlay Materials on Stress Distribution and Fracture of Premolars. Oper. Dent. 2014, 39, E160–E170. [Google Scholar] [CrossRef] [Green Version]
- Rosentritt, M.; Raab, P.; Hahnel, S.; Stöckle, M.; Preis, V. In-Vitro Performance of CAD/CAM-Fabricated Implant-Supported Temporary Crowns. Clin. Oral Investig. 2017, 21, 2581–2587. [Google Scholar] [CrossRef] [PubMed]
- Barreto, B.C.F.; Van Ende, A.; Lise, D.P.; Noritomi, P.Y.; Jaecques, S.; Sloten, J.V.; De Munck, J.; Van Meerbeek, B. Short Fibre-Reinforced Composite for Extensive Direct Restorations: A Laboratory and Computational Assessment. Clin. Oral Investig. 2016, 20, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Keçeci, A.D.; Heidemann, D.; Kurnaz, S. Fracture Resistance and Failure Mode of Endodontically Treated Teeth Restored Using Ceramic Onlays with or without Fiber Posts-an Ex Vivo Study. Dent. Traumatol. 2016, 32, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Coero Borga, F.A.; Alovisi, M.; Rota, R.; Pasqualini, D.; Berutti, E. Is Fracture Resistance of Endodontically Treated Mandibular Molars Restored with Indirect Onlay Composite Restorations Influenced by Fibre Post Insertion? J. Dent. 2012, 40, 814–820. [Google Scholar] [CrossRef]
- Krejci, I.; Duc, O.; Dietschi, D.; de Campos, E. Marginal Adaptation, Retention and Fracture Resistance of Adhesive Composite Restorations on Devital Teeth with and without Posts. Oper. Dent. 2003, 28, 127–135. [Google Scholar]
- Magne, P.; Goldberg, J.; Edelhoff, D.; Güth, J.-F. Composite Resin Core Buildups With and Without Post for the Restoration of Endodontically Treated Molars Without Ferrule. Oper. Dent. 2016, 41, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.P.; Yaman, P.; Dennison, J.; Rafter, M.; Billy, E. Fracture Resistance of Endodontically Treated Teeth Restored with Composite Posts. J. Prosthet. Dent. 2003, 89, 360–367. [Google Scholar] [CrossRef]
- Marchionatti, A.M.E.; Wandscher, V.F.; Rippe, M.P.; Kaizer, O.B.; Valandro, L.F. Clinical Performance and Failure Modes of Pulpless Teeth Restored with Posts: A Systematic Review. Braz. Oral Res. 2017, 31, e64. [Google Scholar] [CrossRef] [Green Version]
Material | General Description | Manufacturer | Composition |
---|---|---|---|
Grandioso X-Tra | Nanohybrid bulk resin composite | Voco | 86% w/w filler content, Bis-GMA, UDMA, TEGDMAc |
Cerasmart 270 | Hybrid ceramic | GC | 71 wt% silica and barium nano glass, Bis-MEPP, UDMA, dimethacrylate co-monomers |
Celtra DUO | Zirconia reinforced lithium disilicate | Dentsply | 58% silicon dioxide, 10.1% crystallized zirconium dioxide, 10% zirconium dioxide, 5% phosphorous pentoxide, 2.0% ceria, 1.9% alumina, 1% terbium oxide |
Grandio Blocks | Nanohybrid reinforced composite | Voco | 86% w/w inorganic filler in a polymeric matrix |
Rebilda Post #15 | Glass fiber reinforced post | Voco | Solid composite of glass fibers, inorganic fillers, PDMA |
CS | GB | CD | ||||
---|---|---|---|---|---|---|
Fiber Post (−) | Fiber Post (+) | Fiber Post (−) | Fiber Post (+) | Fiber Post (−) | Fiber Post (+) | |
Marginal Gap Variation (mm3) | 0.52 a ±0.08 | 0.44 b ±0.07 | 0.52 a ±0.06 | 0.45 b ±0.04 | 0.59 a ±0.09 | 0.41 b ±0.05 |
CS | GB | CD | ||||
---|---|---|---|---|---|---|
Fiber Post (−) | Fiber Post (+) | Fiber Post (−) | Fiber Post (+) | Fiber Post (−) | Fiber Post (+) | |
Fracture Resistance (N) | 1481.21 a ±195.27 | 1576.22 a ±220.51 | 1136.43 b ±202.37 | 1203.86 b ±149.88 | 1351.52 a ±208.08 | 1484.45 a ±179.05 |
CS | GB | CD | |||||
---|---|---|---|---|---|---|---|
Fiber Post (−) | Fiber Post (+) | Fiber Post (−) | Fiber Post (+) | Fiber Post (−) | Fiber Post (+) | ||
| Catastrophic | 5 | 4 | 4 | 2 | 3 | 1 |
| Non-catastrophic | 3 | 4 | 4 | 6 | 5 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, A.; Comba, A.; Michelotto Tempesta, R.; Carossa, M.; Pereira, G.K.R.; Valandro, L.F.; Paolone, G.; Vichi, A.; Goracci, C.; Scotti, N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers 2021, 13, 3002. https://doi.org/10.3390/polym13173002
Baldi A, Comba A, Michelotto Tempesta R, Carossa M, Pereira GKR, Valandro LF, Paolone G, Vichi A, Goracci C, Scotti N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers. 2021; 13(17):3002. https://doi.org/10.3390/polym13173002
Chicago/Turabian StyleBaldi, Andrea, Allegra Comba, Riccardo Michelotto Tempesta, Massimo Carossa, Gabriel Kalil Rocha Pereira, Luiz Felipe Valandro, Gaetano Paolone, Alessandro Vichi, Cecilia Goracci, and Nicola Scotti. 2021. "External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars" Polymers 13, no. 17: 3002. https://doi.org/10.3390/polym13173002
APA StyleBaldi, A., Comba, A., Michelotto Tempesta, R., Carossa, M., Pereira, G. K. R., Valandro, L. F., Paolone, G., Vichi, A., Goracci, C., & Scotti, N. (2021). External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers, 13(17), 3002. https://doi.org/10.3390/polym13173002