Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers
Abstract
:1. Introduction
2. Overview of PAN Precursor Design Factors
3. Raw Polymers
3.1. PAN Structure and Molecular Weight
3.2. Copolymers
4. Spinning Process
4.1. Dopes
4.2. Spinning Processes
4.3. Coagulation
4.4. Post-Spinning Process: Drawing and Densifying
5. Functional Additives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frank, E.; Steudle, L.M.; Ingildeev, D.; Spörl, J.M.; Buchmeiser, M.R. Carbon Fibers: Precursor Systems, Processing, Structure, and Properties. Angew. Chem. Int. Ed. 2014, 53, 5262–5298. [Google Scholar] [CrossRef]
- Chand, S. Review Carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Aamir, M.; Tolouei-Rad, M.; Giasin, K.; Nosrati, A. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review. Int. J. Adv. Manuf. Technol. 2019, 105, 2289–2308. [Google Scholar] [CrossRef]
- Jacob, A. Carbon fibre and cars—2013 in review. Reinf. Plast. 2014, 58, 18–19. [Google Scholar] [CrossRef]
- Holmes, M. Carbon fibre reinforced plastics market continues growth path. Reinf. Plast. 2013, 57, 24–29. [Google Scholar] [CrossRef]
- Bianchi, I.; Forcellese, A.; Marconi, M.; Simoncini, M.; Vita, A.; Castorani, V. Environmental impact assessment of zero waste approach for carbon fiber prepreg scraps. Sustain. Mater. Technol. 2021, 29, e00308. [Google Scholar] [CrossRef]
- Balaji, A.B.; Rudd, C.; Liu, X. Recycled Carbon Fibers (rCF) in Automobiles: Towards Circular Economy. Mater. Circ. Econ. 2020, 2, 4. [Google Scholar] [CrossRef]
- Naito, K. Stress analysis and fracture toughness of notched polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon 2018, 126, 346–359. [Google Scholar] [CrossRef]
- Park, S.-J.; Heo, G.-Y. Precursors and Manufacturing of Carbon Fibers. In Carbon Fibers; Park, S.-J., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 31–66. [Google Scholar] [CrossRef]
- Dér, A.; Dilger, N.; Kaluza, A.; Creighton, C.; Kara, S.; Varley, R.; Herrmann, C.; Thiede, S. Modelling and analysis of the energy intensity in polyacrylonitrile (PAN) precursor and carbon fibre manufacturing. J. Clean. Prod. 2021, 303, 127105. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, V.K.; Kumar, S.K.; Sunkari, U.; Biswas, S.; Martha, S.K. Binder less-integrated freestanding carbon film derived from pitch as light weight and high-power anode for sodium-ion battery. Electrochim. Acta 2020, 353, 136566. [Google Scholar] [CrossRef]
- Qilin, W.; Ding, P. A New Cellulose Based Carbon Fiber from a Lyocell Precursor. Text. Res. J. 2002, 72, 405–410. [Google Scholar] [CrossRef]
- Frank, E.; Ingildeev, D.; Buchmeiser, M.R. 2-High-performance PAN-based carbon fibers and their performance requirements. In Structure and Properties of High-Performance Fibers; Bhat, G., Ed.; Woodhead Publishing: Oxford, UK, 2017; pp. 7–30. [Google Scholar] [CrossRef]
- Carbon fiber | Toray Composite Materials America, Inc. Available online: https://www.toraycma.com/products/carbon-fiber/ (accessed on 26 July 2021).
- HEXCEL®. HexTow Carbon Fiber Product Data. Available online: https://www.hexcel.com/Resources/DataSheets/Carbon-Fiber (accessed on 26 July 2021).
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133, 43794. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A.; Rials, T.G. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. [Google Scholar] [CrossRef]
- Byrne, N.; De Silva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 2018, 25, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, A.; Bengtsson, J.; Sedin, M.; Sjöholm, E. Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions. ACS Sustain. Chem. Eng. 2019, 7, 8440–8448. [Google Scholar] [CrossRef] [Green Version]
- Oroumei, A.; Fox, B.; Naebe, M. Thermal and Rheological Characteristics of Biobased Carbon Fiber Precursor Derived from Low Molecular Weight Organosolv Lignin. ACS Sustain. Chem. Eng. 2015, 3, 758–769. [Google Scholar] [CrossRef]
- Newcomb, B.A.; Chae, H.G. 21—The properties of carbon fibers. In Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Bunsell, A.R., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 841–871. [Google Scholar] [CrossRef]
- Yao, S.-S.; Jin, F.-L.; Rhee, K.Y.; Hui, D.; Park, S.-J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Ye, C.; Wu, H.; Huang, D.; Li, B.; Shen, K.; Yang, J.; Liu, J.; Li, X. The microstructures and mechanical properties of ultra-high-strength PAN-based carbon fibers during graphitization under a constant stretching. Carbon Lett. 2019, 29, 497–504. [Google Scholar] [CrossRef]
- Frank, E.; Hermanutz, F.; Buchmeiser, M.R. Carbon Fibers: Precursors, Manufacturing, and Properties. Macromol. Mater. Eng. 2012, 297, 493–501. [Google Scholar] [CrossRef]
- Chae, H.G.; Newcomb, B.A.; Gulgunje, P.V.; Liu, Y.; Gupta, K.K.; Kamath, M.G.; Lyons, K.M.; Ghoshal, S.; Pramanik, C.; Giannuzzi, L.; et al. High strength and high modulus carbon fibers. Carbon 2015, 93, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Lu, Y.; Zhao, W.; Qin, X. The effect of heat treatment temperature and time on the microstructure and mechanical properties of PAN-based carbon fibers. J. Mater. Sci. 2014, 49, 794–804. [Google Scholar] [CrossRef]
- Liu, X.D.; Ruland, W. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules 1993, 26, 3030–3036. [Google Scholar] [CrossRef]
- Li, X.-Y.; Tian, F.; Gao, X.-P.; Bian, F.-G.; Li, X.-H.; Wang, J. WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process. New Carbon Mater. 2017, 32, 130–136. [Google Scholar] [CrossRef]
- Tang, H.; Meng, F.; Liu, Y.; Jin, S.; Wang, X.; Gao, Z.; Che, X. Investigation of Voids in Polyacrylonitrile Fibers by USAXS and SAXS. Chem. Res. Chin. Univ. 2019, 35, 1070–1075. [Google Scholar] [CrossRef]
- Jung, K.T.; Hwang, D.K.; Shul, Y.G.; Han, H.S.; Lee, W.S. The preparation of isotactic polyacrylonitrile using zeolite. Mater. Lett. 2002, 53, 180–185. [Google Scholar] [CrossRef]
- Tsai, J.-S.; Lin, C.-H. The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber. J. Appl. Polym. Sci. 1991, 42, 3045–3050. [Google Scholar] [CrossRef]
- Lin, X.; Wang, C.G.; Yu, M.J.; Lin, Z.T. The Effect of Molecular Weight on the Structure and Properties of PAN Precursor. Adv. Mater. Res. 2013, 781–784, 2609–2613. [Google Scholar] [CrossRef]
- Ryu, S.K. Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers. Carbon Lett. 2010, 11, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Zhang, L.; Zhu, J.; Zhang, W.; Cheng, Z.; Zhu, X. Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via RAFT polymerization. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 1197–1204. [Google Scholar] [CrossRef]
- Kaur, J.; Millington, K.; Cai, J.Y. Rheology of polyacrylonitrile-based precursor polymers produced from controlled (RAFT) and conventional polymerization: Its role in solution spinning. J. Appl. Polym. Sci. 2016, 133, 44273. [Google Scholar] [CrossRef]
- Eom, Y.; Kim, C.; Kim, B.C. Effects of physical association through nitrile groups on the MWD-dependent viscosity behavior of polyacrylonitrile solutions. Macromol. Res. 2017, 25, 262–269. [Google Scholar] [CrossRef]
- Cai, J.Y.; McDonnell, J.; Brackley, C.; O’Brien, L.; Church, J.S.; Millington, K.; Smith, S.; Phair-Sorensen, N. Polyacrylonitrile-based precursors and carbon fibers derived from advanced RAFT technology and conventional methods—The 1st comparative study. Mater. Today Commun. 2016, 9, 22–29. [Google Scholar] [CrossRef]
- Morris, E.A.; Weisenberger, M.C.; Bradley, S.B.; Abdallah, M.G.; Mecham, S.J.; Pisipati, P.; McGrath, J.E. Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber. Polymer 2014, 55, 6471–6482. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.A.; Weisenberger, M.C.; Abdallah, M.G.; Vautard, F.; Grappe, H.; Ozcan, S.; Paulauskas, F.L.; Eberle, C.; Jackson, D.; Mecham, S.J.; et al. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors. Carbon 2016, 101, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Ju, A.; Guang, S.; Xu, H. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers. Carbon 2013, 54, 323–335. [Google Scholar] [CrossRef]
- Fu, Z.; Gui, Y.; Cao, C.; Liu, B.; Zhou, C.; Zhang, H. Structure evolution and mechanism of polyacrylonitrile and related copolymers during the stabilization. J. Mater. Sci. 2014, 49, 2864–2874. [Google Scholar] [CrossRef]
- Arbab, S.; Zeinolebadi, A. Quantitative analysis of the effects of comonomers and heating conditions on the stabilization reactions of polyacrylonitrile fibers as carbon fiber precursors. Polym. Degrad. Stab. 2017, 139, 107–116. [Google Scholar] [CrossRef]
- Duan, G.; Zhang, H.; Jiang, S.; Xie, M.; Peng, X.; Chen, S.; Hanif, M.; Hou, H. Modification of precursor polymer using co-polymerization: A good way to high performance electrospun carbon nanofiber bundles. Mater. Lett. 2014, 122, 178–181. [Google Scholar] [CrossRef]
- Jung, K.-H.; Deng, W.; Smith Jr, D.W.; Ferraris, J.P. Carbon nanofiber electrodes for supercapacitors derived from new precursor polymer: Poly(acrylonitrile-co-vinylimidazole). Electrochem. Commun. 2012, 23, 149–152. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Yang, J.; Ji, M.; Yu, J.; Wang, M.; Chai, X.; Yang, B.; Zhu, C.; Xu, J. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor. Polymers 2019, 11, 1150. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Ju, A.; Xu, H.; Pan, D. Solution polymerization and thermal properties of acrylonitrile and monomethyl itaconate for carbon fiber precursor. Polym. Mater. Sci. Eng. 2010, 26, 146. [Google Scholar]
- Alcalá-Sánchez, D.; Tapia-Picazo, J.-C.; Bonilla-Petriciolet, A.; Luna-Bárcenas, G.; López-Romero, J.M.; Álvarez-Castillo, A. Analysis of Terpolymerization Systems for the Development of Carbon Fiber Precursors of PAN. Int. J. Polym. Sci. 2020, 2020, 8029516. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, R.; Wang, Z. A quantitative analyses of the viscometric data of the coil-to-globule and globule-to-coil transition of poly(N-isopropylacrylamide) in water. Polymer 2003, 44, 7175–7180. [Google Scholar] [CrossRef]
- Yu, D.-G.; Chou, W.-L.; Yang, M.C. Effect of bore liquid temperature and dope concentration on mechanical properties and permeation performance of polyacrylonitrile hollow fibers. Sep. Purif. Technol. 2006, 51, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.-X.; Niu, F.-X.; Ma, L.-R.; Qu, C.; Fu, S.-L.; Chen, M.-L. Spinnability of Polyacrylonitrile Gel Dope in the Mixed Solvent of Dimethyl Sulfoxide/Dimethylacetamide and Characterization of the Nascent Fibers. Polym. Sci. Ser. A 2018, 60, 638–646. [Google Scholar] [CrossRef]
- Arbab, S.; Noorpanah, P.; Mohammadi, N.; Soleimani, M. Designing index of void structure and tensile properties in wet-spun polyacrylonitrile (PAN) fiber. I. Effect of dope polymer or nonsolvent concentration. J. Appl. Polym. Sci. 2008, 109, 3461–3469. [Google Scholar] [CrossRef]
- Eom, Y.; Ju, H.; Kim, B.C.; Chae, H.G. Enthalpic effect of polyacrylonitrile on the concentrated solutions in dimethyl sulfoxide: Strong thixotropic behavior and formation of bound solvents. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 1080–1089. [Google Scholar] [CrossRef]
- Du, W.; Chen, H.; Xu, H.; Pan, D.; Pan, N. Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution with water. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 1437–1442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Y.; Zhao, J. Thermodynamic study of non-solvent/dimethyl sulfoxide/polyacrylonitrile ternary systems: Effects of the non-solvent species. Polym. Bull. 2011, 67, 1073–1089. [Google Scholar] [CrossRef]
- Eom, Y.; Kim, B.C. Solubility parameter-based analysis of polyacrylonitrile solutions in N,N-dimethyl formamide and dimethyl sulfoxide. Polymer 2014, 55, 2570–2577. [Google Scholar] [CrossRef]
- Tan, L.; Pan, D.; Pan, N. Thermodynamic study of a water–dimethylformamide–polyacrylonitrile ternary system. J. Appl. Polym. Sci. 2008, 110, 3439–3447. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Zhao, J.; Zhang, Y.; Pan, D. Morphology control of polyacrylonitrile (PAN) fibers by phase separation technique. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 261–275. [Google Scholar] [CrossRef]
- Cheng, L.; Ouyang, Q.; Wang, H.-J. Effect of Water on the Viscosity Properties of Polyacrylonitrile Solution in Dimethylsulfoxide. J. Macromol. Sci. Part B 2009, 48, 617–625. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Kulichikhin, V.G.; Malkin, A.Y. Unusual rheological effects observed in polyacrylonitrile solutions. Polym. Sci. Ser. A 2013, 55, 503–509. [Google Scholar] [CrossRef]
- Arbab, S.; Noorpanah, P.; Mohammadi, N.; Zeinolebadi, A. Exploring the effects of non-solvent concentration, jet-stretching and hot-drawing on microstructure formation of poly(acrylonitrile) fibers during wet-spinning. J. Polym. Res. 2010, 18, 1343–1351. [Google Scholar] [CrossRef]
- Tan, L.; Liu, S.; Pan, D. Water effect on the gelation behavior of polyacrylonitrile/dimethyl sulfoxide solution. Colloids Surf. A Physicochem. Eng. Asp. 2009, 340, 168–173. [Google Scholar] [CrossRef]
- Dong, R.; Keuser, M.; Zeng, X.; Zhao, J.; Zhang, Y.; Wu, C.; Pan, D. Viscometric measurement of the thermodynamics of PAN terpolymer/DMSO/water system and effect of fiber-forming conditions on the morphology of PAN precursor. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1997–2011. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, F. Unusual viscosity behavior of polyacrylonitrile in NaSCN aqueous solutions. Polymer 2015, 64, 130–138. [Google Scholar] [CrossRef]
- Köhler, T.; Peterek, S.; Gries, T. Wet spinning PAN-fibres from aqueous solutions of ZnCl2and NaSCN. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 082016. [Google Scholar] [CrossRef] [Green Version]
- PETEREK, S.; GRIES, T. Carbon Fibre Precursor Production with NaSCN (aq.) As A Sustainable Solvent. Tekstil ve Mühendis 2019, 26, 187–191. [Google Scholar] [CrossRef]
- Sun, L.; Shang, L.; Xiao, L.; Zhang, M.; Li, M.; Ao, Y. Structural changes of polyacrylonitrile fibers in the process of wet spinning. J. Appl. Polym. Sci. 2020, 137, 48905. [Google Scholar] [CrossRef]
- Peng, G.-q.; Wen, Y.-f.; Yang, Y.-g.; Liu, L.; Wang, W. Effect of dope extrusion rate on the formation and characterization of polyacrylonitrile nascent fibers during wet-spinning. Polym. Bull. 2009, 62, 657–666. [Google Scholar] [CrossRef]
- Gao, Q.; Jing, M.; Zhao, S.; Wang, Y.; Qin, J.; Yu, M.; Wang, C. Effect of spinning speed on microstructures and mechanical properties of polyacrylonitrile fibers and carbon fibers. Ceram. Int. 2020, 46, 23059–23066. [Google Scholar] [CrossRef]
- Tan, L.; Liu, S.; Pan, D.; Pan, N. Gelation of polyacrylonitrile in a mixed solvent: Scaling and fractal analysis. Soft Matter 2009, 5, 4297–4304. [Google Scholar] [CrossRef]
- Tan, L.; Liu, S.; Song, K.; Chen, H.; Pan, D. Gel-spun polyacrylonitrile fiber from pregelled spinning solution. Polym. Eng. Sci. 2010, 50, 1290–1294. [Google Scholar] [CrossRef]
- Bercea, M.; Morariu, S.; Brunchi, C.E. Rheological Investigation of Thermal-Induced Gelation of Polyacrylonitrile Solutions. Int. J. Thermophys. 2009, 30, 1411–1422. [Google Scholar] [CrossRef]
- Chen, H.; Du, W.; Ye, W.; Pan, D. Structure of PAN precursor in thermal-induced gel spinning. J. Appl. Polym. Sci. 2011, 122, 1176–1181. [Google Scholar] [CrossRef]
- Tan, L.; Pan, D.; Pan, N. Water effect on the rheologic behavior of PAN solution during thermal-induced gelation process. Polym. Adv. Technol. 2011, 22, 2279–2284. [Google Scholar] [CrossRef]
- Tan, L.; Wan, A.; Pan, D. Pregelled gel spinning of polyacrylonitrile precursor fiber. Mater. Lett. 2011, 65, 887–890. [Google Scholar] [CrossRef]
- Wei, H.; Suo, X.; Lu, C.; Liu, Y. A comparison of coagulation and gelation on the structures and stabilization behaviors of polyacrylonitrile fibers. J. Appl. Polym. Sci. 2020, 137, 48671. [Google Scholar] [CrossRef]
- Newcomb, B.A.; Gulgunje, P.V.; Gupta, K.; Kamath, M.G.; Liu, Y.; Giannuzzi, L.A.; Chae, H.G.; Kumar, S. Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers. Polym. Eng. Sci. 2015, 55, 2603–2614. [Google Scholar] [CrossRef]
- Miller, G.C.; Yu, J.; Joseph, R.M.; Choudhury, S.R.; Mecham, S.J.; Baird, D.G.; Bortner, M.; Norris, R.E.; Paulauskas, F.L.; Riffle, J.S. Melt-spinnable polyacrylonitrile copolymer precursors for carbon fibers. Polymer 2017, 126, 87–95. [Google Scholar] [CrossRef]
- Lee, J.H.; Jin, J.-U.; Park, S.; Choi, D.; You, N.-H.; Chung, Y.; Ku, B.-C.; Yeo, H. Melt processable polyacrylonitrile copolymer precursors for carbon fibers: Rheological, thermal, and mechanical properties. J. Ind. Eng. Chem. 2019, 71, 112–118. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Chang, H.-C.; Chiu, Y.-T.; Tsai, J.-L. The index of dry-jet wet spinning for polyacrylonitrile precursor fibers. J. Appl. Polym. Sci. 2015, 132, 41265. [Google Scholar] [CrossRef]
- Tan, L.; Chen, H.; Pan, D.; Pan, N. Investigating the spinnability in the dry-jet wet spinning of PAN precursor fiber. J. Appl. Polym. Sci. 2008, 110, 1997–2000. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Jing, M.; Wang, C.; Chen, M.; Zhao, S.; Wang, W.; Qin, J. Correlation between fibril structures and mechanical properties of polyacrylonitrile fibers during the dry-jet wet spinning process. J. Appl. Polym. Sci. 2019, 136, 47336. [Google Scholar] [CrossRef]
- Li, X.-P.; Suo, X.-D.; Liu, Y.-D.; Li, Y.-H. Effect of gelation time on the microstructures, mechanical properties and cyclization reactions of dry-jet gel-spun polyacrylonitrile fibers. New Carbon Mater. 2019, 34, 9–18. [Google Scholar] [CrossRef]
- Yang, H.-S.; Kim, Y.-M.; Choi, H.; Jang, J.; Youk, J.H.; Lee, B.-S.; Yu, W.-R. Electrochemical wet-spinning process for fabricating strong PAN fibers via an in situ induced plasticizing effect. Polymer 2020, 202, 122641. [Google Scholar] [CrossRef]
- Knudsen, J.P. The Influence of Coagulation Variables on the Structure and Physical Properties of an Acrylic Fiber. Text. Res. J. 1963, 33, 13–20. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.-G.; Dong, X.-G.; Liu, H.-Z. Study on the Coagulation Mechanism of Wet-Spinning PAN Fibers. J. Polym. Res. 2006, 13, 515–519. [Google Scholar] [CrossRef]
- Zhou, P.; Lu, C.; Shi, J.; Li, K.; He, F.; Zhang, S.; Li, Y. Effect of Bath Concentration on Coagulation Kinetics at the Early Stage during Wet Spinning of PAN Copolymer Nascent Fibers. J. Macromol. Sci. Part B 2011, 50, 1215–1225. [Google Scholar] [CrossRef]
- Zhou, Y.; Sha, Y.; Liu, W.; Gao, T.; Yao, Z.; Zhang, Y.; Cao, W. Hierarchical radial structure of polyacrylonitrile precursor formed during the wet-spinning process. RSC Adv. 2019, 9, 17051–17056. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.-Q.; Zhang, X.-H.; Wen, Y.-F.; Yang, Y.-G.; Liu, L. Effect of Coagulation Bath DMSO Concentration on the Structure and Properties of Polyacrylonitrile (PAN) Nascent Fibers during Wet-Spinning. J. Macromol. Sci. Part B 2008, 47, 1130–1141. [Google Scholar] [CrossRef]
- Dong, X.-G.; Wang, C.-G.; Bai, Y.-J.; Cao, W.-W. Effect of DMSO/H2O coagulation bath on the structure and property of polyacrylonitrile fibers during wet-spinning. J. Appl. Polym. Sci. 2007, 105, 1221–1227. [Google Scholar] [CrossRef]
- Sobhanipour, P.; Cheraghi, R.; Volinsky, A.A. Thermoporometry study of coagulation bath temperature effect on polyacrylonitrile fibers morphology. Thermochim. Acta 2011, 518, 101–106. [Google Scholar] [CrossRef]
- Bahrami, S.H.; Bajaj, P.; Sen, K. Effect of coagulation conditions on properties of poly(acrylonitrile–carboxylic acid) fibers. J. Appl. Polym. Sci. 2003, 89, 1825–1837. [Google Scholar] [CrossRef]
- Morris, E.A.; Weisenberger, M.C.; Rice, G.W. Properties of PAN Fibers Solution Spun into a Chilled Coagulation Bath at High Solvent Compositions. Fibers 2015, 3, 560–574. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-X.; Wang, C.-G.; Bai, Y.-J.; Bo, Z. Effect of the drawing process on the wet spinning of polyacrylonitrile fibers in a system of dimethyl sulfoxide and water. J. Appl. Polym. Sci. 2007, 104, 1026–1037. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Y.; Zhang, B.; Su, H.; Xu, L. Formation of Surface Morphology in Polyacrylonitrile (PAN) Fibers during Wet-Spinning. J. Eng. Fibers Fabr. 2018, 13, 155892501801300208. [Google Scholar] [CrossRef] [Green Version]
- Fakhrhoseini, S.M.; Khayyam, H.; Naebe, M. Chemically Enhanced Wet-Spinning Process to Accelerate Thermal Stabilization of Polyacrylonitrile Fibers. Macromol. Mater. Eng. 2018, 303, 1700557. [Google Scholar] [CrossRef]
- Gao, Q.; Jing, M.; Chen, M.; Zhao, S.; Wang, W.; Qin, J.; Wang, C. Microfibril alignment induced by stretching fields during the dry-jet wet spinning process: Reinforcement on polyacrylonitrile fiber mechanical properties. Polym. Test. 2020, 81, 106191. [Google Scholar] [CrossRef]
- Chen, J.C.; Harrison, I.R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 2002, 40, 25–45. [Google Scholar] [CrossRef]
- Gong, Y.; Du, R.; Mo, G.; Xing, X.; Lü, C.-X.; Wu, Z. In-situ microstructural changes of polyacrylonitrile based fibers with stretching deformation. Polymer 2014, 55, 4270–4280. [Google Scholar] [CrossRef]
- Zeng, X.; Hu, J.; Zhao, J.; Zhang, Y.; Pan, D. Investigating the jet stretch in the wet spinning of PAN fiber. J. Appl. Polym. Sci. 2007, 106, 2267–2273. [Google Scholar] [CrossRef]
- Ouyang, Q.; Chen, Y.-S.; Zhang, N.; Mo, G.-M.; Li, D.-H.; Yan, Q. Effect of Jet Swell and Jet Stretch on the Structure of Wet-Spun Polyacrylonitrile Fiber. J. Macromol. Sci. Part B 2011, 50, 2417–2427. [Google Scholar] [CrossRef]
- Gao, Q.; Jing, M.; Chen, M.; Zhao, S.; Wang, Y.; Qin, J.; Yu, M.; Wang, C. Force field in coagulation bath at low temperature induced microfibril evolution within PAN nascent fiber and precursor fiber. J. Appl. Polym. Sci. 2020, 137, 49380. [Google Scholar] [CrossRef]
- Gao, Q.; Jing, M.; Wang, C.; Zhao, S.; Chen, M.; Qin, J. Preparation of High-Quality Polyacrylonitrile Precursors for Carbon Fibers Through a High Drawing Ratio in the Coagulation Bath During a Dry-Jet Wet Spinning Process. J. Macromol. Sci. Part B 2019, 58, 128–140. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, J.; Zhao, J.; Wu, C.; Pan, D.; Pan, N. Investigation the jet stretch in PAN fiber dry-jet wet spinning for PAN-DMSO-H2O system. J. Appl. Polym. Sci. 2009, 114, 3621–3625. [Google Scholar] [CrossRef]
- Ahn, H.; Wee, J.-H.; Kim, Y.M.; Yu, W.-R.; Yeo, S.-Y. Microstructure and Mechanical Properties of Polyacrylonitrile Precursor Fiber with Dry and Wet Drawing Process. Polymers 2021, 13, 1613. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Kong, H.; Ding, X.; Hu, Z.; Zhang, L.; Cao, Y.; Yu, M. Effect of Different Pressures of Supercritical Carbon Dioxide on the Microstructure of PAN Fibers during the Hot-Drawing Process. Polymers 2019, 11, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Jing, M.; Wang, C.; Chen, M.; Zhao, S.; Qin, J.; Wang, W. Fibril microstructural changes of polyacrylonitrile fibers during the post-spinning process. Colloid Polym. Sci. 2018, 296, 1307–1311. [Google Scholar] [CrossRef]
- Demczyk, B.G.; Wang, Y.M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R.O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178. [Google Scholar] [CrossRef]
- Mikolajczyk, T.; Szparaga, G.; Bogun, M.; Fraczek-Szczypta, A.; Blazewicz, S. Effect of spinning conditions on the mechanical properties of polyacrylonitrile fibers modified with carbon nanotubes. J. Appl. Polym. Sci. 2010, 115, 3628–3635. [Google Scholar] [CrossRef]
- Mirbaha, H.; Nourpanah, P.; Scardi, P.; D’incau, M.; Greco, G.; Valentini, L.; Bittolo Bon, S.; Arbab, S.; Pugno, N. The Impact of Shear and Elongational Forces on Structural Formation of Polyacrylonitrile/Carbon Nanotubes Composite Fibers during Wet Spinning Process. Materials 2019, 12, 2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.G.; Sreekumar, T.V.; Uchida, T.; Kumar, S. Oxidative stabilization of PAN/SWNT composite fiber. Carbon 2005, 43, 599–604. [Google Scholar] [CrossRef]
- Liu, Y.; Chae, H.G.; Kumar, S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization. Carbon 2011, 49, 4466–4476. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhang, D.; Zhao, J. Dry-jet wet-spun PAN/MWCNT composite fibers with homogeneous structure and circular cross-section. J. Appl. Polym. Sci. 2012, 125, E58–E66. [Google Scholar] [CrossRef]
- Sayyar, S.; Moskowitz, J.; Fox, B.; Wiggins, J.; Wallace, G. Wet-spinning and carbonization of graphene/PAN-based fibers: Toward improving the properties of carbon fibers. J. Appl. Polym. Sci. 2019, 136, 47932. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, J.; Rajabpour, S.; Joshi, K.; Kowalik, M.; Croom, B.; Schwab, Y.; Zhang, L.; Bumgardner, C.; Brown, K.R.; et al. Graphene reinforced carbon fibers. Sci. Adv. 2020, 6, eaaz4191. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Tian, M.; Qu, L.; Zhao, Y.; Chen, S.; Zhu, S.; Han, G. Wet-spinning assembly of continuous and macroscopic graphene oxide/polyacrylonitrile reinforced composite fibers with enhanced mechanical properties and thermal stability. J. Appl. Polym. Sci. 2019, 136, 46950. [Google Scholar] [CrossRef]
- Chang, H.; Chien, A.-T.; Liu, H.C.; Wang, P.-H.; Newcomb, B.A.; Kumar, S. Gel Spinning of Polyacrylonitrile/Cellulose Nanocrystal Composite Fibers. ACS Biomater. Sci. Eng. 2015, 1, 610–616. [Google Scholar] [CrossRef]
- Jiang, E.; Maghe, M.; Zohdi, N.; Amiralian, N.; Naebe, M.; Laycock, B.; Fox, B.L.; Martin, D.J.; Annamalai, P.K. Influence of Different Nanocellulose Additives on Processing and Performance of PAN-Based Carbon Fibers. ACS Omega 2019, 4, 9720–9730. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, S.G.; Kim, S.H. The use of a nanocellulose-reinforced polyacrylonitrile precursor for the production of carbon fibers. J. Mater. Sci. 2013, 48, 6952–6959. [Google Scholar] [CrossRef]
- Seydibeyoğlu, M.Ö. A Novel Partially Biobased PAN-Lignin Blend as a Potential Carbon Fiber Precursor. J. Biomed. Biotechnol. 2012, 2012, 598324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhilash, J.K.; Porkodi, P.; Shukla, H.K. Wet spinning of low cost carbon fiber precursor-lignin incorporated polyacrylonitrile co-polymer fiber. Aip Conf. Proc. 2019, 2166, 020019. [Google Scholar] [CrossRef]
- Dong, X.; Lu, C.; Zhou, P.; Zhang, S.; Wang, L.; Li, D. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. RSC Adv. 2015, 5, 42259–42265. [Google Scholar] [CrossRef]
- Xia, K.; Ouyang, Q.; Chen, Y.; Wang, X.; Qian, X.; Wang, L. Preparation and Characterization of Lignosulfonate–Acrylonitrile Copolymer as a Novel Carbon Fiber Precursor. ACS Sustain. Chem. Eng. 2016, 4, 159–168. [Google Scholar] [CrossRef]
- Liu, D.; Ouyang, Q.; Jiang, X.; Ma, H.; Chen, Y.; He, L. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber. Polym. Degrad. Stab. 2018, 150, 57–66. [Google Scholar] [CrossRef]
- Oroumei, A.; Naebe, M. Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology. Fibers Polym. 2017, 18, 2079–2093. [Google Scholar] [CrossRef]
- Jia, Z.; Lu, C.; Liu, Y.; Zhou, P.; Wang, L. Lignin/Polyacrylonitrile Composite Hollow Fibers Prepared by Wet-Spinning Method. ACS Sustain. Chem. Eng. 2016, 4, 2838–2842. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Remadevi, R.; Razal, J.M.; Naebe, M. Impact of the wet spinning parameters on the alpaca-based polyacrylonitrile composite fibers: Morphology and enhanced mechanical properties study. J. Appl. Polym. Sci. 2020, 137, 49264. [Google Scholar] [CrossRef]
- Chang, H.; Luo, J.; Liu, H.C.; Zhang, S.; Park, J.G.; Liang, R.; Kumar, S. Carbon fibers from polyacrylonitrile/cellulose nanocrystal nanocomposite fibers. Carbon 2019, 145, 764–771. [Google Scholar] [CrossRef]
- Yusof, N.; Ismail, A.F. Polyacrylonitrile/acrylamide-based carbon fibers prepared using a solvent-free coagulation process: Fiber properties and its structure evolution during stabilization and carbonization. Polym. Eng. Sci. 2012, 52, 360–366. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X.; Liu, W.; He, M.; Niu, H.; Wu, D. Effects of using polyacrylonitrile on the thermal, morphological and mechanical properties of polyimide/polyacrylonitrile blend fibers. Fibers Polym. 2015, 16, 2244–2250. [Google Scholar] [CrossRef]
- Chang, J.; He, M.; Niu, H.; Sui, G.; Wu, D. Structures and properties of polyimide/polyacrylonitrile blend fibers during stabilization process. Polymer 2016, 89, 102–111. [Google Scholar] [CrossRef]
- Mataram, A.; Ismail, A.F.; Mahmod, D.S.A.; Matsuura, T. Characterization and mechanical properties of polyacrylonitrile/silica composite fibers prepared via dry-jet wet spinning process. Mater. Lett. 2010, 64, 1875–1878. [Google Scholar] [CrossRef]
- Peng, H.; Wang, D.; Li, M.; Zhang, L.; Liu, M.; Fu, S. Ultra-small SiO2 nanospheres self-pollinated on flower-like MoS2 for simultaneously reinforcing mechanical, thermal and flame-retardant properties of polyacrylonitrile fiber. Compos. Part B Eng. 2019, 174, 107037. [Google Scholar] [CrossRef]
Researchers | Modulus (GPa) | Strength (MPa) | Dope Concentration (wt%) and Solvent | Spinning Process | CF Modulus (GPa) | CF Strength (MPa) | Notes |
---|---|---|---|---|---|---|---|
Morris et al. [40] | 16.5 ± 3.4 | 826 ± 129 | 6.5%, DMAc | Dry-jet gel | 345 | 4300 | Ultra-high-molecular-weight PAN |
Chae et al. [26] | 20.7 ± 1.1 | 1000 ± 100 | ~10.5%, DMF | Dry-jet gel | 375 | 5800 | Low-temp coagulation get spinning |
Alcalá-Sánchez et al. [48] | - | 16.87 cN/dtex | 20%, DMF | Wet | - | - | Terpolymerization |
Lee et al. [76] | 6.76 ± 1.78 | 260 ± 30 | - | Melt | 110 | 1370 | Melt spinning |
Min et al. [108] | 16.2 ± 0.8 | 330 ± 20 | ~13.8%, DMAc | Dry-jet wet | - | - | SWNT |
Liu et al. [109] | 19.2 ± 2.9 | 1010 ± 70 | ~15%, DMF | Dry-jet gel | - | - | MWNT |
Gao et al. [112] | 6.0 | 80 | ~7.5%, DMSO | Wet | 233 | 1919 | Graphene |
Zhao et al. [113] | 11.24 | 118 ± 2 | 15%, DMF | Wet | - | - | Graphene Oxide |
Chang et al. [114] | 19.6 ± 2.3 | 709 ± 98 | ~ 13.5%, DMF | Dry-jet wet | - | - | Cellulose nanocrystals |
Yusof et al. [126] | 5.54 ± 0.03 | - | ~18%, DMF | Dry-jet wet | 35 | - | Acrylamide |
Mataram et al. [129] | 5.94 | 1.07 | DMF | Dry-jet wet | - | - | Silica |
Peng et al. [131] | - | 19.16 ± 0.45 | 20%, DMF | Wet | - | - | Molybdenum disulfide |
Karbownik et al. [132] | 850.81 cN/tex | 41.47 cN/tex | 23%, DMF | Wet | - | - | Silver nitrate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Yeo, S.Y.; Lee, B.-S. Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers. Polymers 2021, 13, 2863. https://doi.org/10.3390/polym13172863
Ahn H, Yeo SY, Lee B-S. Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers. Polymers. 2021; 13(17):2863. https://doi.org/10.3390/polym13172863
Chicago/Turabian StyleAhn, Hyunchul, Sang Young Yeo, and Byoung-Sun Lee. 2021. "Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers" Polymers 13, no. 17: 2863. https://doi.org/10.3390/polym13172863
APA StyleAhn, H., Yeo, S. Y., & Lee, B.-S. (2021). Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers. Polymers, 13(17), 2863. https://doi.org/10.3390/polym13172863