Preparation, Properties and Potential of Carrageenan-Based Hard Capsules for Replacing Gelatine: A Review
Abstract
:1. Introduction
2. Carrageenan: Potential for Fast Drug Delivery
3. Hard Capsules: Preparation and Characterisation
3.1. Methods of Preparation
3.2. Dimension Analysis
3.3. Water and Ash Content
3.4. Microbial Limit Test
3.5. Viscosity
3.6. Swelling Degree (SD)
3.7. Mechanical Properties
3.8. Surface Morphology Analysis Using Scanning Electron Microscopy (SEM)
3.9. Molecular Weight (MW)
3.10. Thermal Properties
3.11. Fourier-Transform Infrared Spectroscopy (FTIR)
4. Disintegration Process
5. Dissolution Process and Release Kinetics of Drug-delivery Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef] [Green Version]
- Gullapalli, R.P.; Mazzitelli, C.L. Gelatin and Non-Gelatin Capsule Dosage Forms; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 106. [Google Scholar] [CrossRef]
- Sakata, Y.; Otsuka, M. Evaluation of Relationship between Molecular Behaviour and Mechanical Strength of Pullulan Films. Int. J. Pharm. 2009, 374, 33–38. [Google Scholar] [CrossRef]
- Adam, F.; Jamaludin, J.; Abu Bakar, S.H.; Abdul Rasid, R.; Hassan, Z. Evaluation of Hard Capsule Application from Seaweed: Gum Arabic-Kappa Carrageenan Biocomposite Films. Cogent Eng. 2020, 7, 1765682. [Google Scholar] [CrossRef]
- Mutalib, S.A.; Muin, N.M.; Abdullah, A.; Hassan, O.; Wan Mustapha, W.A.; Abdullah Sani, N.; Maskat, M.Y. Sensitivity of Polymerase Chain Reaction (PCR)-Southern Hybridization and Conventional PCR Analysis for Halal Authentication of Gelatin Capsules. LWT 2015, 63, 714–719. [Google Scholar] [CrossRef]
- Sherry Ku, M.; Li, W.; Dulin, W.; Donahue, F.; Cade, D.; Benameur, H.; Hutchison, K. Performance Qualification of a New Hypromellose Capsule: Part I. Comparative Evaluation of Physical, Mechanical and Processability Quality Attributes of Vcaps Plus®, Quali-V® and Gelatin Capsules. Int. J. Pharm. 2010, 386, 30–41. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Liu, X.; Li, Z.; Liu, B.; Wu, J.; Shi, M.; Norde, W.; Li, Y. TEMPO-Oxidized Konjac Glucomannan as Appliance for the Preparation of Hard Capsules. Carbohydr. Polym. 2016, 143, 262–269. [Google Scholar] [CrossRef]
- Vishvesh, K.B.; Doshi, S.M.; Patel, V.P. Duocap: The Capsule in Capsule Technology. Int. Res. J. Pharm. 2015, 6, 86–89. [Google Scholar] [CrossRef]
- Pudjiastuti, P.; Wafiroh, S.; Hendradi, E.; Darmokoesoemo, H.; Harsini, M.; Fauzi, M.A.R.D.; Nahar, L.; Sarker, S.D. Disintegration, in Vitro Dissolution, and Drug Release Kinetics Profiles of k-Carrageenan-Based Nutraceutical Hard-Shell Capsules Containing Salicylamide. Open Chem. 2020, 18, 226–231. [Google Scholar] [CrossRef]
- Manimaran, P.; Saravanan, S.P.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A. Characterization of New Cellulosic Fiber: Dracaena Reflexa as a Reinforcement for Polymer Composite Structures. J. Mater. Res. Technol. 2019, 8, 1952–1963. [Google Scholar] [CrossRef]
- Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A.; Parameswaranpillai, J. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibers from Tridax Procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef]
- Glube, N.; von Moos, L.; Duchateau, G. Capsule Shell Material Impacts the in Vitro Disintegration and Dissolution Behaviour of a Green Tea Extract. Results Pharma Sci. 2013, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauzi, M.A.R.D.; Pudjiastuti, P.; Hendradi, E.; Widodo, R.T.; Amin, M.C.I.M. Characterization, Disintegration, and Dissolution Analyses of Carrageenan-Based Hard-Shell Capsules Cross-Linked with Maltodextrin as a Potential Alternative Drug Delivery System. Int. J. Polym. Sci. 2020, 2020. [Google Scholar] [CrossRef]
- Hjerde, T.; Smidsrød, O.; Stokke, B.T.; Christensen, B.E. Acid Hydrolysis of κ and ι-Carrageenan in the Disordered and Ordered Conformations: Characterization of Partially Hydrolyzed Samples and Single-Stranded Oligomers Released from the Ordered Structures. Macromolecules 1998, 31, 1842–1851. [Google Scholar] [CrossRef]
- Kamińska-Dwórznicka, A.; Antczak, A.; Samborska, K.; Lenart, A. Acid Hydrolysis of Kappa-Carrageenan as a Way of Gaining New Substances for Freezing Process Modification and Protection from Excessive Recrystallisation of Ice. Int. J. Food Sci. Technol. 2015, 50, 1799–1806. [Google Scholar] [CrossRef]
- Noor, H.M. Potential of Carrageenans in Foods and Medical Applications. GHMJ (Global Health Manag. J.) 2018, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- David, S.; Shani Levi, C.; Fahoum, L.; Ungar, Y.; Meyron-Holtz, E.G.; Shpigelman, A.; Lesmes, U. Revisiting the Carrageenan Controversy: Do We Really Understand the Digestive Fate and Safety of Carrageenan in Our Foods? Food Funct. 2018, 9, 1344–1352. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, X.; Wan, J.; Wang, Y.; Wang, C. Review for Carrageenan-Based Pharmaceutical Biomaterials: Favourable Physical Features versus Adverse Biological Effects. Carbohydr. Polym. 2015, 121, 27–36. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Urakawa, H.; Kajiwara, K. Structural Characteristics of Carrageenan Gels: Various Types of Counter Ions. Food Hydrocoll. 2003, 17, 481–485. [Google Scholar] [CrossRef]
- Ridgway, K. Hard Capsules: Development and Technology; Pharmaceutical Press: London, UK, 1987. [Google Scholar]
- European Directorate for the Quality of Medicines & Healthcare. European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2014; pp. 1547–3525. [Google Scholar]
- Klaerner, G.; Padmanabhan, R. Multi-Step/Step-Eise Polymerization of Well-Defined Oligomers. Ref. Modul. Mater. Sci. Mater. Eng. 2016, 2015, 1–9. [Google Scholar] [CrossRef]
- Liu, S. Interactive Enzyme and Molecular Regulation; Bioprocess Engineering, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 535–628. [Google Scholar] [CrossRef]
- Scherer, T.M.; Fuller, R.C.; Goodwin, S.; Lenz, R.W. Enzymatic Hydrolysis of Oligomeric Models of Poly-3-Hydroxybutyrate. Biomacromolecules 2000, 1, 577–583. [Google Scholar] [CrossRef]
- Rahmayetti, R.; Sukirno; Gozan, M. Effect of Polycondensation Temperature to Oligomer Yield and Depolimerisation Side Reaction. World Chem. Eng. J. 2018, 2, 12–16. [Google Scholar]
- Jiang, H.; Chen, T.; Qi, Y.; Xu, J. Macrocyclic Oligomeric Arylene Ether Ketones: Synthesis and Polymerization. Polym. J. 1998, 30, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Pan, J. Polymer Chain Scission, Oligomer Production and Diffusion: A Two-Scale Model for Degradation of Bioresorbable Polyesters. Acta Biomater. 2011, 7, 538–547. [Google Scholar] [CrossRef]
- Myslabodski, D.E.; Stancioff, D.; Heckert, R.A. Effect of Acid Hydrolysis on the Molecular Weight of Kappa Carrageenan by GPC-LS. Carbohydr. Polym. 1996, 31, 83–92. [Google Scholar] [CrossRef]
- FDA. Size, Shape and Other Physical Attributes of Generic Tablets and Capsules; US Department of Health and Human Services, & Food and Drug Administration: Washington, DC, USA, 2015; pp. 1–7.
- Capsugel. Coni-Snap Hard Gelatin Capsules; Capsugel Inc.: Morristown, NJ, USA, 2011. [Google Scholar]
- Zhang, L.; Wang, Y.; Liu, H.; Yu, L.; Liu, X.; Chen, L.; Zhang, N. Developing Hydroxypropyl Methylcellulose/Hydroxypropyl Starch Blends for Use as Capsule Materials. Carbohydr. Polym. 2013, 98, 73–79. [Google Scholar] [CrossRef]
- Zheng, X.; Lan, Y. Effects of Drying Temperature and Moisture Content on Rice Taste Quality. CIGR Ejournal 2007, 1971, 1112–1117. [Google Scholar] [CrossRef]
- He, H.; Ye, J.; Zhang, X.; Huang, Y.; Li, X.; Xiao, M. κ-Carrageenan/Locust Bean Gum as Hard Capsule Gelling Agents. Carbohydr. Polym. 2017, 175, 417–424. [Google Scholar] [CrossRef]
- Bae, H.J.; Cha, D.S.; Whiteside, W.S.; Park, H.J. Film and Pharmaceutical Hard Capsule Formation Properties of Mungbean, Waterchestnut, and Sweet Potato Starches. Food Chem. 2008, 106, 96–105. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar Philip, A.; Pathak, K. Asymmetric Membrane Capsules of Phenylephrine Hydrochloride: An Osmotically Controlled Drug Delivery System. Curr. Drug Deliv. 2011, 8, 474–482. [Google Scholar] [CrossRef]
- Convention, U.S.P. United States Pharmacopoeia <731>; United States Pharmacopoeia Convention: Annapolis, MD, USA, 2020. [Google Scholar]
- Convention, U.S.P. United States Pharmacopoeia <281>; United States Pharmacopoeia Convention: Annapolis, MD, USA, 2016; Volume 31. [Google Scholar]
- GMIA. Gelatin Handbook; Nitta Gelatin Canada, Inc.: Toronto, ON, Canada, 2012; pp. 1–25. [Google Scholar]
- Convention, U.S.P. United States Pharmacopoeia <61>; United States Pharmacopoeia Convention: Annapolis, MD, USA, 2009. [Google Scholar] [CrossRef]
- Eissa, M.E. Distribution of Bacterial Contamination in Non-Sterile Pharmaceutical Materials and Assessment of Its Risk to the Health of the Final Consumers Quantitatively. Beni-Suef. Univ. J. Basic Appl. Sci. 2016, 5, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Khosrowshahi Asl, A. Effect of Various Additives on the Properties of the Films and Coatings Derived from Hydroxypropyl Methylcellulose—A Review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef] [Green Version]
- Bono, A.; Anisuzzaman, S.M.; Ding, O.W. Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-Refined Carrageenan (SRC) Produced from Seaweed (Kappaphycus Alvarezii). J. King Saud Univ. Eng. Sci. 2014, 26, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Shin-etsu. USP Hypromellose. Metolose SR: Sustained Release Agent for Matrix System; Shin-Etsu Chemical, Inc.: Tokyo, Japan, 2005. [Google Scholar]
- Leuenberger, B.H. Investigation of Viscosity and Gelation Properties of Different Mammalian and Fish Gelatins. Top. Catal. 1991, 5, 353–361. [Google Scholar] [CrossRef]
- Rhim, J.W. Physical-Mechanical Properties of Agar/κ-Carrageenan Blend Film and Derived Clay Nanocomposite Film. J. Food Sci. 2012, 77. [Google Scholar] [CrossRef]
- Król, Z.; Malik, M.; Marycz, K.; Jarmoluk, A. Characteristic of Gelatine, Carrageenan and Sodium Alginate Hydrosols Treated by Direct Electric Current. Polymers 2016, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Uno, Y.; Omoto, T.; Goto, Y.; Asai, I.; Nakamura, M.; Maitani, T. Molecular Weight Distribution of Carrageenans Studied by a Combined Gel Permeation/Inductively Coupled Plasma (GPC/ICP) Method. Food Addit. Contam. 2001, 18, 763–772. [Google Scholar] [CrossRef]
- Joshi, S.C. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release. Materials 2011, 4, 1861–1905. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, C.A.; Farrugia, I.V.; Groves, M.J. Comparison of the Molecular Weight Distribution of Gelatin Fractions by Size-Exclusion Chromatography and Light Scattering. Pharm. Pharmacol. Commun. 1998, 4, 559–562. [Google Scholar] [CrossRef]
- Mahmood, W.A.K.; Khan, M.M.R.; Yee, T.C. Effects of Reaction Temperature on the Synthesis and Thermal Properties of Carrageenan Ester Wan Ahmad Kamil Mahmood, 1 Mohammad Mizanur Rahman Khan 2* and Teow Cheng Yee 1. J. Phys. Sci. 2014, 25, 123–138. [Google Scholar]
- Perfetti, G.; Alphazan, T.; Wildeboer, W.J.; Meesters, G.M.H. Thermo-Physical Characterization of Pharmacoat® 603, Pharmacoat® 615 and Mowiol® 4–98. J. Therm. Anal. Calorim. 2012, 109, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001, 22, 763–768. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Yap, S.W.; Owolabi, F.A.T.; Haafiz, M.K.M.; Fazita, M.R.; Gopakumar, D.A.; Hasan, M.; Rizal, S. Techno-Functional Properties of Edible Packaging Films at Different Polysaccharide Blends. J. Phys. Sci. 2019, 30, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, M.A.; Adam, F.; Mohd Amin, K.N. Investigation of Mixing Time on Carrageenan-Cellulose Nanocrystals (CNC) Hard Capsule for Drug Delivery Carrier. Int. J. Innov. Sci. Res. Technol. 2018, 3, 457–461. [Google Scholar]
- Akinosho, H.; Hawkins, S.; Wicker, L. Hydroxypropyl Methylcellulose Substituent Analysis and Rheological Properties. Carbohydr. Polym. 2013, 98, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Al-Saidi, G.S.; Al-Alawi, A.; Rahman, M.S.; Guizani, N. Fourier Transform Infrared (FTIR) Spectroscopic Study of Extracted Gelatin from Shaari (Lithrinus Microdon) Skin: Effects of Extraction Conditions. Int. Food Res. J. 2012, 19, 1167–1173. [Google Scholar]
- Jones, B.E.; Basit, A.W.; Tuleu, C. The Disintegration Behaviour of Capsules in Fed Subjects: A Comparison of Hypromellose (Carrageenan) Capsules and Standard Gelatin Capsules. Int. J. Pharm. 2012, 424, 40–43. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Rubber-Determination of Gel, Swelling Index, and Dilute Soluton Viscosity; ASTM Int.: Montgomery, PA, USA, 2019. [Google Scholar]
- da Silva, B.C.; de Oliveira, M.; Ferreira, J.G.L.; Sierakowski, M.R.; Simas-Tosin, F.F.; Orth, E.S.; Riegel-Vidotti, I.C. Polyelectrolyte Complexes from Gum Arabic and Gelatin: Optimal Complexation PH as a Key Parameter to Obtain Reproducible Microcapsules. Food Hydrocoll. 2015, 46, 201–207. [Google Scholar] [CrossRef]
- Barbosa, J.A.C.; Al-Kauraishi, M.M.; Smith, A.M.; Conway, B.R.; Merchant, H.A. Achieving Gastroresistance without Coating: Formulation of Capsule Shells from Enteric Polymers. Eur. J. Pharm. Biopharm. 2019, 144, 174–179. [Google Scholar] [CrossRef]
- Soares, A.P. Formulation Development and In-Vivo Radiographic Studies of Diltiazem Hydrochloride Loaded Floating Capsules Prepared by Modified Pulsincap Technology. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar] [CrossRef]
- Lal, S.S.; Tanna, P.; Kale, S.; Mhaske, S.T. Kafirin Polymer Film for Enteric Coating on HPMC and Gelatin Capsules. J. Mater. Sci. 2017, 52, 3806–3820. [Google Scholar] [CrossRef]
- Bouklas, N.; Huang, R. Swelling Kinetics of Polymer Gels: Comparison of Linear and Nonlinear Theories. Soft Matter 2012, 8, 8194–8203. [Google Scholar] [CrossRef]
- Bennour, S.; Louzri, F. Study of Swelling Properties and Thermal Behavior of Poly(N,N-Dimethylacrylamide-Co-Maleic Acid) Based Hydrogels. Adv. Chem. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ngadiwiyana; Ismiyarto; Gunawan; Purbowatiningrum, R.S.; Prasetya, N.B.A.; Kusworo, T.D.; Susanto, H. Sulfonated Polystyrene and Its Characterization as a Material of Electrolyte Polymer. J. Phys. Conf. Ser. 2018, 1025, 012133. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.C.; Daniel-Da-Silva, A.L.; Trindade, T. Photothermally Enhanced Drug Release by κ-Carrageenan Hydrogels Reinforced with Multi-Walled Carbon Nanotubes. RSC Adv. 2013, 3, 10828–10836. [Google Scholar] [CrossRef]
- Unagolla, J.M.; Jayasuriya, A.C. Drug Transport Mechanisms and in Vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur. J. Pharm. Sci. 2018, 114, 199–209. [Google Scholar] [CrossRef]
- ASTM International. ASTM International Standard Test Method for Ruber-Determination of Gel, Swelling Index, and Dilute Solution Viscosity. ASTM Standard D3616. ASTM Int. 2014, 95, 1–5. [Google Scholar] [CrossRef]
- Desai, P.M.; Liew, C.V.; Heng, P.W.S. Review of Disintegrants and the Disintegration Phenomena. J. Pharm. Sci. 2016, 105, 2545–2555. [Google Scholar] [CrossRef] [Green Version]
- Nyström, C.; Alderborn, G.; Duberg, M.; Karehill, P.-G. Bonding Surface Area and Bonding Mechanism—Two Important Factors for the Understanding of Powder Compactibility. Drug Dev. Ind. Pharm. 1993, 19, 2143–2196. [Google Scholar] [CrossRef]
- Distantina, S.; Rochmadi; Fahrurrozi, M.; Wiratni. Preparation and Characterization of Glutaraldehyde-Crosslinked Kappa Carrageenan Hydrogel. Eng. J. 2013, 17, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Kipcak, A.S.; Ismail, O.; Doymaz, I.; Piskin, S. Good Paper for Swelling Studies and Swelling Models Modeling and Investigation of the Swelling Kinetics of Acrylamide-Sodium Acrylate Hydrogel. J. Chem. 2014. [Google Scholar] [CrossRef] [Green Version]
- Aydinoʇlu, D. Investigation of PH-Dependent Swelling Behavior and Kinetic Parameters of Novel Poly(Acrylamide-Co-Acrylic Acid) Hydrogels with Spirulina. E-Polymers 2015, 15, 81–93. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.U.; Kim, H.C.; Kim, J.W.; Kim, J. Swelling Behavior of Polyacrylamide-Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and PH Effects. Materials 2019, 12, 2080. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.K.; Hari, P.K. Tensile Behavior of Woven Fabrics. Woven Text. Struct. 2010, 137–163. [Google Scholar] [CrossRef]
- ASTM International. ASTM D638: The Definitive Guide to Plastic Tensile Testing; ASTM Int.: Montgomery, PA, USA, 2021. [Google Scholar]
- Davis, J.R. Introduction to Tensile Testing (Second Edition). Tensile Test; ASTM Int.: Montgomery, PA, USA, 2004; pp. 1–13. [Google Scholar]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, S.; Sandoval, G.; Palos, I.; Tellez, S.; Aguirre-Loredo, Y.; Velazquez, G. The Effect of Relative Humidity on Tensile Strength and Water Vapor Permeability in Chitosan, Fish Gelatin and Transglutaminase Edible Films. Food Sci. Technol. 2015, 35, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.; Etzler, F.; Wang, Z. Use of Texture Analysis to Study Hydrophilic Solvent Effects on the Mechanical Properties of Hard Gelatin Capsules. Int. J. Pharm. 2006, 324, 128–135. [Google Scholar] [CrossRef]
- Felton, L. Physical-Mechanical Properties of Film-Coated Soft Gelatin Capsules. Int. J. Pharm. 1996, 127, 203–211. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for Scanning Electron Microscope Beam Size Characterization; ASTM Int.: Montgomery, PA, USA, 2017. [Google Scholar]
- Azad, M.; Avin, A. Scanning Electron Microscopy (SEM): A Review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 1–9 January 2019. [Google Scholar]
- Informat, J.H.M.; Tanaka, K.; Maeda, K. Scanning Electron Microscopy. Health Med. Inform. 2014, 5, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Brychcy, E.; Kulig, D.; Zimoch-Korzycka, A.; Marycz, K.; Jarmoluk, A. Physicochemical Properties of Edible Chitosan/Hydroxypropyl Methylcellulose/Lysozyme Films Incorporated with Acidic Electrolyzed Water. Int. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef]
- Wu, L.; Wang, H.; Zhu, X.H.; Hou, Y.C.; Liu, W.W.; Yang, G.M.; Jiang, A. Pectin-Chitosan Complex: Preparation and Application in Colon-Specific Capsule. Int. J. Agric. Biol. Eng. 2015, 8, 151–160. [Google Scholar] [CrossRef]
- Distantina, S.; Fadilah, F.; Kaavessina, M.; Material, A. Swelling Behaviour of Kappa Carrageenan Hydrogel in Neutral Salt Solution. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2016, 10, 917–920. [Google Scholar]
- Crawshaw, B.; Herrick, D.Z.; Gao, W.; Maziarz, E.P.; Liu, X.M. Separation and Characterization of Gelatins Using Aqueous Gel Permeation Chromatography with Advanced Detection Systems. ACS Symp. Ser. 2018, 1281, 51–74. [Google Scholar] [CrossRef]
- Lange, H.; Rulli, F.; Crestini, C. Gel Permeation Chromatography in Determining Molecular Weights of Lignins: Critical Aspects Revisited for Improved Utility in the Development of Novel Materials. ACS Sustain. Chem. Eng. 2016, 4, 5167–5180. [Google Scholar] [CrossRef]
- Pettongkhao, S.; Bilanglod, A.; Khompatara, K.; Churngchow, N. Sulphated Polysaccharide from Acanthophora Spicifera Induced Hevea Brasiliensis Defense Responses against Phytophthora Palmivora Infection. Plants 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Slootmaekers, D.; van Dijk, J.A.P.P.; Varkevisser, F.A.; van Treslong, C.J.B.; Reynaers, H. Molecular Characterisation of κ- and λ-Carrageenan by Gel Permeation Chromatography, Light Scattering, Sedimentation Analysis and Osmometry. Biophys. Chem. 1991, 41, 51–59. [Google Scholar] [CrossRef]
- Fornaguera, C.; Solans, C. Analytical Methods to Characterize and Purify Polymeric Nanoparticles. Int. J. Polym. Sci. 2018, 2018. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning. ASTM Int. 2012, D4318-08, 1–7. [Google Scholar] [CrossRef]
- Seifi, H.; Gholami, T.; Seifi, S.; Mehdi, S. A Review on Current Trends in Thermal Analysis and Hyphenated Techniques in the Investigation of Physical, Mechanical and Chemical Properties of Nanomaterials. J. Anal. Appl. Pyrolysis 2020, 149, 104840. [Google Scholar] [CrossRef]
- Moraes, A.N.F.; Silva, L.A.D.; de Oliveira, M.A.; de Oliveira, E.M.; Nascimento, T.L.; Lima, E.M.; Torres, I.M.S.; Diniz, D.G.A. Compatibility Study of Hydroxychloroquine Sulfate with Pharmaceutical Excipients Using Thermal and Nonthermal Techniques for the Development of Hard Capsules. J. Therm. Anal. Calorim. 2020, 140, 2283–2292. [Google Scholar] [CrossRef]
- ASTM International. ASTM E1131—20 Standard Test Method for Compositional Analysis by Thermogravimetry 1. ASTM Int. 2015, 8, 6. [Google Scholar]
- Byrn, S.R.; Zografi, G.; Chen, X.S. Differential Scanning Calorimetry and Thermogravimetric Analysis. Solid State Prop. Pharm. Mater. 2017, 124–141. [Google Scholar] [CrossRef]
- Nazzal, S.; Wang, Y. Characterization of Soft Gelatin Capsules by Thermal Analysis. Int. J. Pharm. 2001, 230, 35–45. [Google Scholar] [CrossRef]
- Vasvári, G.; Csontos, B.; Sovány, T.; Regdon, G.; Bényei, A.; Váradi, J.; Bácskay, I.; Ujhelyi, Z.; Fehér, P.; Sinka, D.; et al. Development and Characterisation of Modified Release Hard Gelatin Capsules, Based on In Situ Lipid Matrix Formation. AAPS PharmSciTech 2018, 19, 3165–3176. [Google Scholar] [CrossRef]
- Yanez, E. The Effects of Low Molecular Weight Polar Molecules on the Physical and Chemical Properties of Hard Gelatin Capsule Shells. Master’s Thesis, University of Kansas, Lawrence, KS, USA, 2017. [Google Scholar]
- Kianfar, F.; Antonijevic, M.D.; Chowdhry, B.Z.; Boateng, J.S. Formulation Development of a Carrageenan Based Delivery System for Buccal Drug Delivery Using Ibuprofen as a Model Drug. J. Biomater. Nanobiotechnol. 2011, 2, 582–595. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.K.; Saba, A.U.; Nawazish, S.; Akhtar, F.; Rashid, R.; Mir, S.; Nasir, B.; Iqbal, F.; Afzal, S.; Pervaiz, F.; et al. Carrageenan Based Bionanocomposites as Drug Delivery Tool with Special Emphasis on the Influence of Ferromagnetic Nanoparticles. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Walther, B.; Lorén, N.; Nydén, M.; Hermansson, A.M. Influence of κ-Carrageenan Gel Structures on the Diffusion of Probe Molecules Determined by Transmission Electron Microscopy and NMR Diffusometry. Langmuir 2006, 22, 8221–8228. [Google Scholar] [CrossRef]
- Tengroth, C.; Gasslander, U.; Andersson, F.; Jacobsson, S. Cross-Linking of Gelatin Capsules with Formaldehyde and Other Aldehydes: An FTIR Spectroscopy Study. Pharm. Dev. Technol. 2005, 10, 405–412. [Google Scholar] [CrossRef]
- Pereira, L.; Ribeiro-Claro, P.J.A. Analysis by Vibrational Spectroscopy of Seaweed with Potential Use in Food, Pharmaceutical and Cosmetic Industries. Mar. Algae Biodivers. Taxon. Environ. Assess. Biotechnol. 2014, 2013, 228–250. [Google Scholar] [CrossRef]
- ASTM International. Fourier Transform Infrared Spectrometry ASTM E168, ASTM E1252; ASTM Int.: Montgomery, PA, USA, 2021. [Google Scholar]
- Meng, F.; Zhang, Y.; Xiong, Z.; Wang, G.; Li, F.; Zhang, L. Mechanical, Hydrophobic and Thermal Properties of an Organic-Inorganic Hybrid Carrageenan-Polyvinyl Alcohol Composite Film. Compos. Part B Eng. 2018, 143, 1–8. [Google Scholar] [CrossRef]
- Convention, U.S.P. United States Pharmacopoeia <701>; United States Pharmacopoeia Convention: Annapolis, MD, USA, 2020. [Google Scholar]
- Parkash, V.; Maan, S.; Deepika, Y.; Hemlata, V.; Jogpal, V. Fast Disintegration Tablets: Opportunity in Drug Delivery System. J. Adv. Pharm. Tech. Res. 2011, 2, 223–235. [Google Scholar] [CrossRef]
- Schmid, K.; Löbenberg, R. Influence of the Changed USP Specifications on Disintegration Test Performance. Dissolution Technol. 2010, 17, 6–10. [Google Scholar] [CrossRef]
- Al-Gousous, J.; Langguth, P. Oral Solid Dosage Form Disintegration Testing—The Forgotten Test. J. Pharm. Sci. 2015, 104, 2664–2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.A.; Webster, G.K.; Bou-Chacra, N.; Löbenberg, R. The Significance of Disintegration Testing in Pharmaceutical Development. Dissolution Technol. 2018, 25, 30–38. [Google Scholar] [CrossRef]
- Chong, R.H.E.; Jones, B.E.; Díez, F.; Birchall, J.C.; Coulman, S.A. Evaluating the Sensitivity, Reproducibility and Flexibility of a Method to Test Hard Shell Capsules Intended for Use in Dry Powder Inhalers. Int. J. Pharm. 2016, 500, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Pimparade, M.B.; Vo, A.; Maurya, A.S.; Bae, J.; Morott, J.T.; Feng, X.; Kim, D.W.; Kulkarni, V.I.; Tiwari, R.; Vanaja, K.; et al. Development and Evaluation of an Oral Fast Disintegrating Anti- Allergic Film Using Hot-Melt Extrusion Technology. Eur. J. Pharm. Biopharm. 2018, 176, 139–148. [Google Scholar] [CrossRef]
- Hixson, A.W.; Crowell, J.H. Dependence of Reaction Velocity upon Surface and Agitation: III—Experimental Procedure in Study of Agitation. Ind. Eng. Chem. 1931, 23, 1160–1168. [Google Scholar] [CrossRef]
- Noyes, A.A.; Whitney, W.R. The Rate of Solution of Solid Substances in Their Own Solutions. J. Am. Chem. Soc. 1897, 19, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T. Mechanism of Sustained-action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef]
- Higuchi, T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef]
- Frisch, H.L. Diffusion in Glassy Polymers. J. Polym. Sci. Part B Polym. Phys. 1969, 7, 879–887. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and Non-Fickian Drug Release from Polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar]
- Peppas, N.A.; Sahlin, J.J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Varelas, C.G.; Dixon, D.G.; Steiner, C.A. Zero-Order Release from Biphasic Polymer Hydrogels. J. Control. Release 1995, 34, 185–192. [Google Scholar] [CrossRef]
- Gibaldi, M.; Feldman, S. Establishment of Sink Conditions in Dissolution Rate Determinations. Theoretical Considerations and Application to Nondisintegrating Dosage Forms. J. Pharm. Sci. 1967, 56, 1238–1242. [Google Scholar] [CrossRef]
Capsule Size | Weight (mg) | ||
---|---|---|---|
Minimum | Capsule Size | Maximum | |
00 | 110 | 00 | 110 |
0 | 87 | 0 | 87 |
1 | 67 | 1 | 67 |
2 | 55 | 2 | 55 |
3 | 46 | 3 | 46 |
Capsule Size | Body (mm) | Cap (mm) |
---|---|---|
00 | 19.50–20.50 | 11.50–12.50 |
0 | 17.90–28.90 | 10.20–11.00 |
1 | 16.00–17.00 | 9.300–10.30 |
2 | 14.80–15.70 | 8.500–9.400 |
3 | 13.25–14.05 | 7.600–8.500 |
Capsule Size. | Before Locking (mm) | After Locking (mm) |
---|---|---|
00 | 25.00–26.00 | 23.30–24.45 |
0 | 23.15–23.90 | 21.00–22.00 |
1 | 20.45–21.20 | 18.90–19.70 |
2 | 18.60–19.50 | 17.35–18.00 |
3 | 17.20–18.10 | 15.50–16.70 |
Capsule Size | Body (mm) | Cap (mm) |
---|---|---|
00 | 0.20–0.22 | 0.21–0.23 |
0 | 0.19–0.21 | 0.20–0.22 |
1 | 0.19–0.21 | 0.19–0.21 |
2 | 0.19–0.21 | 0.19–0.21 |
3 | 0.18–0.20 | 0.19–0.21 |
Capsule Size | Capsule Volume (mL) | Weight Capacity for Powdered Drug (mg) based on the Density | |||
---|---|---|---|---|---|
0.6 g mL−1 | 0.8 g mL−1 | 1.0 g mL−1 | 1.2 g mL−1 | ||
00 | 0.95 | 570 | 760 | 950 | 1140 |
0 | 0.68 | 408 | 544 | 680 | 816 |
1 | 0.50 | 300 | 400 | 500 | 600 |
2 | 0.37 | 222 | 296 | 370 | 444 |
3 | 0.30 | 180 | 240 | 300 | 360 |
Capsule Size | Capsule Diameter | |
---|---|---|
Body (mm) | Cap (mm) | |
00 | 8.15 ± 0.10 | 8.51 ± 0.10 |
0 | 7.29 ± 0.10 | 7.60 ± 0.10 |
1 | 6.55 ± 0.10 | 6.88 ± 0.10 |
2 | 6.04 ± 0.10 | 6.32 ± 0.10 |
3 | 5.56 ± 0.10 | 5.79 ± 0.10 |
No | Property | Carrageenan | Ref. | Carrageenan-Based | Ref. | HPMC | Ref. | Gelatine | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Water and Ash Content | N/A | - | N/A | - | Water content: 6%–7% | [30] | Water content: 10.5% ± 1.5% Ash content: 1.5% ± 0.5% | [38] |
2 | Microbial Activity | N/A | - | N/A | - | HPMC film does not contain any microbial activity | [41] | 16.98% Micrococcaceae and 24.53% Bacillaceae | [40] |
3 | Viscosity | 1291.84 cP at 80 °C and cooked for 30 min | [42] | N/A | - | ≤100.00 cP | [43] | 25.6 cP at 25.5 °C | [44] |
4 | Swelling Degree | N/A | 529.23% ± 128.10% | [13] | N/A | - | 145.5% ± 86.04% | [13] | |
5 | Mechanical Properties | 39.34 ± 0.51 MPa | [45] | N/A | - | 19.90 ± 1.20 MPa | [34] | 31.03 ± 0.74 MPa | [45] |
6 | Surface Morphology by SEM | No pores at 5000× magnification | [13] | Pores observed on the surface at 200 nm | [46] | No pores at 30-μm scale | [41] | No pores at 200 nm scale | [46] |
7 | Molecular Weight | 193 kDa to 324 kDa | [47] | N/A | - | 10 kDa to 22 kDa | [48] | 7.1 kDa to 131.6 kDa | [49] |
8 | Thermal Properties | Five stages decomposition: 90 °C, 192 °C, 245 °C, 350 °C and 780 °C | [50] | N/A | - | Tg = 280 °C–300 °C | [51] | One-stage decomposition; Tg = 90–92 °C | [52] |
9 | Fingerprint Spectrum on FTIR | 1248, 930, 847 and 805 cm−1 | [13] | Additional fingerprint peaks will be detected | [13,33,53,54] | 1053 cm−1 and 944 cm−1 | [55] | 3600–2700 cm−1, 1900–900 cm−1 and 400–900 cm−1 | [56] |
10 | Disintegration Rate | N/A | – | 18.47 ± 0.19 min in deionised water | [13] | 16 ± 5 min in human body | [57] | 12 ± 4 min in the human body | [57] |
Raw Material (Cited Reference) | Modified Material (Cited Reference) |
---|---|
κ-Carrageenan
ι-Carrageenan
λ-Carrageenan | κ-Carrageenan crosslinked with corn starch [53]
κ -Carrageenan blended with locust bean gum [33]
κ-Carrageenan crosslinked with maltodextrin and plasticised with sorbitol [13]
κ-Carrageenan crosslinked with Arabic gum [54]
|
Diffusion Exponent (n) | Mechanism | ||
---|---|---|---|
Film | Cylinder | Sphere | |
0.50 | 0.45 | 0.43 | Fickian Diffusion |
0.50 < n < 1.00 | 0.45 < n < 0.89 | 0.43 < n < 0.85 | Anomalous Transport |
1.00 | 0.89 | 0.85 | Case-II Transport |
>1.00 | >0.89 | >0.85 | Supercase-II Transport |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzi, M.A.R.D.; Pudjiastuti, P.; Wibowo, A.C.; Hendradi, E. Preparation, Properties and Potential of Carrageenan-Based Hard Capsules for Replacing Gelatine: A Review. Polymers 2021, 13, 2666. https://doi.org/10.3390/polym13162666
Fauzi MARD, Pudjiastuti P, Wibowo AC, Hendradi E. Preparation, Properties and Potential of Carrageenan-Based Hard Capsules for Replacing Gelatine: A Review. Polymers. 2021; 13(16):2666. https://doi.org/10.3390/polym13162666
Chicago/Turabian StyleFauzi, Muhammad Al Rizqi Dharma, Pratiwi Pudjiastuti, Arief Cahyo Wibowo, and Esti Hendradi. 2021. "Preparation, Properties and Potential of Carrageenan-Based Hard Capsules for Replacing Gelatine: A Review" Polymers 13, no. 16: 2666. https://doi.org/10.3390/polym13162666
APA StyleFauzi, M. A. R. D., Pudjiastuti, P., Wibowo, A. C., & Hendradi, E. (2021). Preparation, Properties and Potential of Carrageenan-Based Hard Capsules for Replacing Gelatine: A Review. Polymers, 13(16), 2666. https://doi.org/10.3390/polym13162666