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Abstract: Intense efforts to develop alternative materials for gelatine as a drug-delivery system are
progressing at a high rate. Some of the materials developed are hard capsules made from alginate,
carrageenan, hypromellose and cellulose. However, there are still some disadvantages that must be
minimised or eliminated for future use in drug-delivery systems. This review attempts to review
the preparation and potential of seaweed-based, specifically carrageenan, hard capsules, summarise
their properties and highlight their potential as an optional main component of hard capsules in a
drug-delivery system. The characterisation methods reviewed were dimensional analysis, water and
ash content, microbial activity, viscosity analysis, mechanical analysis, scanning electron microscopy,
swelling degree analysis, gel permeation chromatography, Fourier-transform infrared spectroscopy
and thermal analysis. The release kinetics of the capsule is highlighted as well. This review is expected
to provide insights for new researchers developing innovative products from carrageenan-based
hard capsules, which will support the development goals of the industry.

Keywords: drug-delivery system; carrageenan; hard capsule; seaweed; product innovation

1. Introduction

Solid dosage forms, such as soft and hard capsules, are the most widely used delivery
methods for oral administration of active pharmaceutical ingredients to patients [1] because
they offer better protection against oxygen, moisture and light until the drug is released.
Hard capsules are produced without the addition of a non-volatile plasticiser and have
been used as drug-delivery carriers for powders, granules and pellets [2]. Soft capsules, on
the other hand, are produced with the addition of a plasticiser and other minor components,
such as dyes and opaquing agents, and can be delivered orally, vaginally or rectally in
different forms [3].

To this day, gelatine, produced from porcines or bovines [4], is still the primary ingre-
dient in capsules, which is a concern for some religious societies [5]. Commercialisation of
such capsules requires a bovine spongiform encephalopathy-free certificate due to mad
cow disease [6,7]. Therefore, an alternative material for hard-capsule production is urgently
needed.

The alternative materials developed for hard capsules include alginate [8], carrageenan [9],
hypromellose (HPMC) [6] and strong cellulosic fibre from different plant materials such as
Dracanea reflexa [10] and Tridax procumbens [11]. However, there are still some disadvan-
tages that must be improved for future use, such as the need for alginate hard capsules
to be crosslinked with another agent to form a rigid gel [8]. The disintegration process of
carrageenan and HPMC hard capsules takes longer (25.79 ± 2.92 min) than conventional
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hard capsules (20 min) at pH 4.5 [10,12,13]. There are several factors that influence poly-
mer disintegration time. For example, possessing parallel conformations of a polymer
network increases the stability of the polymer itself, and hence, makes it more resistant to
disintegration. Long polymer chains of carrageenan potentially can be broken down into
oligomers [14], which can be used for tumour treatment [15].

In this paper, we review methods for the preparation of seaweed, in particular for
carrageenan-based hard capsules, and summarise their chemical properties and disintegra-
tion and dissolution profiles, including the release kinetics of the capsule. We focused on
carrageenan because it has more potential than HPMC or alginate for the preparation of
hard capsules. The oligomerisation process in carrageenan has not been researched suffi-
ciently to identify opportunities for further investigation. Through this review, we hope to
provide sufficient background for new researchers to further develop carrageenan-based
hard capsules.

2. Carrageenan: Potential for Fast Drug Delivery

Carrageenan is used as a gelling agent in products, such as frozen foods, jellies
and yogurt [16]. Commercially, carrageenan has been produced in six different types
based on their structures (Figure 1) [17]. Among the six polymers, κ-carrageenan is the
most produced due to its high gelling ability caused by the C4 conformation on the 3,6-
anhydro-D-galactopyranosyl that forms a helix-like structure [18]. The formation of the
helix structure is supported by the enormous number of –OH groups that form many
hydrogen bonds [19].
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Figure 1. Six types of carrageenan. A = µ- carrageenan, B = κ- carrageenan, C = ν- carrageenan,
D = ι- carrageenan, E = λ- carrageenan and F = θ- carrageenan.

To produce hard capsules, the material needs to have high viscosity to support the
formation of a gel that can be dried into a film [20]. Since the target is the human body, the
recommended solvent for the production is deionised water [13]. Previous papers reported
that most carrageenan-based hard capsules exhibit slow disintegration rates, and yet some
drugs must deliver a drug to the target site in our bodies in <15 min [21]. Therefore, the
polymer chains of carrageenan should be reduced to increase the disintegration rate.

The molecular weight (MW) of a polymer is influenced by disintegration and dissolu-
tion processes. The high MWs of polymeric composites cause longer disintegration and
dissolution times, so these polymers must be hydrolysed to oligomers to reduce these times.
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The accuracy of MWs of polymers used in capsules and the types of drugs encapsulated
require additional disintegration and dissolution studies.

Oligomers have fewer repetitive units [2–25] and lower molecular masses than poly-
mers. Oligomer production is useful for understanding the mechanism of polymerisation,
to optimise polymer production and provide a better understanding of complex macro-
molecules [22]. Naturally-occurring oligomers can be found in the structures of enzymes
or proteins with the formation of disulphide bridges [23] and in the bacterial polyhydrox-
yalkanoates [24]. Synthetic oligomerisation can be performed by changing certain physical
conditions, such as temperature [25], or by chemical modification (Figure 2) [26].
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Carrageenan oligomers can be produced from oligomerisation of the monomers [23]
or from controlled degradation of the polymeric form [27]. Degradation of a polymer to
an oligomer is affected by the homogeneity level of the polymer, chemical groups on the
monomers and its degree of crystallinity [27]. For example, carrageenan can be degraded to
form oligomers or monomers by acid hydrolysis under a controlled pH and temperature of
the solution [15,28]. There are few articles about the development of oligomers to increase
the rate of dissolution in drug-delivery systems. However, we found that carrageenan has
good potential for development as an oligomer-based drug-delivery system as it is easily
hydrolysed by a weak acid, such as citrate buffer [13]. Accordingly, the oligomerisation of
carrageenan should be performed at a controlled temperature and time, i.e., at 70 ◦C for
5 h [9], to form a homogeneous solution and control the oligomers formed. One purpose of
this oligomerisation process is to control the rate of disintegration of carrageenan-based
hard capsules. In this manner, various oral drugs can be delivered optimally in a drug-
delivery system.

3. Hard Capsules: Preparation and Characterisation

Characterisations will help in understanding the properties of prepared hard capsules.
The properties could be compared with those of standard hard capsules to determine if
the developed capsules have good potential for use in a drug-delivery system. A good-
quality hard capsule should comply with international standards. For example, the largest
dimension of a tablet or capsule should not exceed 22 mm [29]. When a hard capsule is
developed, it is necessary to ensure that it has no adverse effects, has a suitable dissolution
rate, is biocompatible and safe and has the desired efficacy of the active ingredients. In
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line with this, the International Pharmacopoeia recommends compatibility analysis of hard
capsules consisting of a uniformity test of mass and content, a viscosity test, a disintegration
test and a dissolution test [30]. Development of a preparation method and characterisation
results from the series of tests above should validate the compatibility of the developed
hard capsules.

3.1. Methods of Preparation

Hard capsules, such as HPMC- [4], carrageenan- [13] and gelatine-based capsules,
are typically prepared with the dipping method [20]. Prior to the fabrication process,
evaluating the viscosity and gelation temperature of the various blends of materials is
crucial to find the best composition [31]. There are six major steps in dipping methods:
dipping, spinning, drying, stripping, trimming and joining (Figure 3), among which the
most important step that determines the properties of the resulting hard capsule is the
drying process. The interaction within the polymer used for the hard capsule strongly
affects its drying time, which depends on the capsule’s target rigidity [32]. For example, the
stronger hydrogen-bonded water of a starch-based capsule than that of an HPMC capsule
will need a longer drying process. On the other hand, Ye et al. used low temperature and
a short oven time (33 ◦C for 3 h) for drying carrageenan-based capsules due to weaker
hydrogen bonds [33].
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The industrial dipping process is performed by dipping pairs of stainless-steel pins
into the dipping solution to form the caps and bodies. The spinning process is performed
by rotating the pins to distribute the solution uniformly and avoid the formation of gas
bubbles in the solution. The hard capsules are formed by drying the solution with a blast of
cool air for a certain length of time. The stripping and trimming processes are performed
to produce good-quality capsules. Finally, all bodies and caps are joined together into hard
capsules [20].

Similar steps were also adopted at the laboratory scale [7,9,13]. Bae et al. [34] prepared
a pharmaceutical starch-based hard capsule by dipping preheated pins into the warm
starch solution in which the starch thermally gelled on the surface of the pins. The pins,
onto which films of gelled starch solution remained, were withdrawn, followed by drying
in a controlled temperature and humidity chamber for 24 h. The dried capsule pieces
were then stripped, cut into various sizes and fitted together. This dipping method can be
used to prepare carrageenan-based hard capsules with an adjustment in temperature and
heating time. The conditions suggested are at 70 ◦C for 5 h [9], as mentioned earlier. The
as-prepared capsule is characterised to compare its properties with those of conventional
hard capsules to determine its potential as an alternative drug-delivery system.

3.2. Dimension Analysis

Standard dimensional requirements for hard gelatine capsules used by capsule indus-
tries are shown in Tables 1–6. Based on Ridgway [20], the size of a capsule is classified into
five different classes, with size 00 as the biggest and size 3 as the smallest. Kumar et al. [35]
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developed an osmotically controlled release system of phenylephrine hydrochloride in an
ethyl cellulose capsule. Their results showed that the lengths of the cap and body of the
capsule were 10.45 ± 0.34 mm and 17.42 ± 0.22 mm, respectively. The diameters of both
segments were 7.21 ± 0.17 mm and 6.79 ± 0.24 mm, respectively. If we take a closer look
at Tables 2 and 6, the resulting dimensions do not comply with the mentioned standard,
which implies that the dimensional analysis of an underdeveloped capsule is optional.
The quality of the dipping pen further affects the resulting capsule size. Fauzi et al. [13]
prepared a carrageenan-based hard capsule with diameters of 7.18 ± 0.12 mm for the
cap and 7.37 ± 0.13 mm for the body. This result is also inconsistent with the standard
requirement. Therefore, the dimensional specification of the standard hard capsule should
not be the primary indicator of the quality of an underdeveloped capsule, and additional,
comprehensive characterisations should be performed to evaluate its overall quality. We
suggest that one of the ways to comply with the standard is to use an industrial standard
machine to produce the capsule to achieve precise and uniform capsules. The material
composites should have good gelling strength and be dried easily. Capsule production
requires trial and error until the desired properties are achieved.

Table 1. Weight specification of hard gelatine capsules.

Capsule Size
Weight (mg)

Minimum Capsule Size Maximum

00 110 00 110
0 87 0 87
1 67 1 67
2 55 2 55
3 46 3 46

Table 2. Length specification of the segment of hard gelatine capsules.

Capsule Size Body (mm) Cap (mm)

00 19.50–20.50 11.50–12.50
0 17.90–28.90 10.20–11.00
1 16.00–17.00 9.300–10.30
2 14.80–15.70 8.500–9.400
3 13.25–14.05 7.600–8.500

Table 3. Length specification of hard gelatine capsules.

Capsule Size. Before Locking (mm) After Locking (mm)

00 25.00–26.00 23.30–24.45
0 23.15–23.90 21.00–22.00
1 20.45–21.20 18.90–19.70
2 18.60–19.50 17.35–18.00
3 17.20–18.10 15.50–16.70

Table 4. Thickness specification of hard gelatine capsules.

Capsule Size Body (mm) Cap (mm)

00 0.20–0.22 0.21–0.23
0 0.19–0.21 0.20–0.22
1 0.19–0.21 0.19–0.21
2 0.19–0.21 0.19–0.21
3 0.18–0.20 0.19–0.21
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Table 5. Capacity specification of hard gelatine capsules.

Capsule Size Capsule Volume (mL) Weight Capacity for Powdered Drug (mg) based on the Density
0.6 g mL−1 0.8 g mL−1 1.0 g mL−1 1.2 g mL−1

00 0.95 570 760 950 1140
0 0.68 408 544 680 816
1 0.50 300 400 500 600
2 0.37 222 296 370 444
3 0.30 180 240 300 360

Table 6. Diameter specification of hard gelatine capsules.

Capsule Size
Capsule Diameter

Body (mm) Cap (mm)

00 8.15 ± 0.10 8.51 ± 0.10
0 7.29 ± 0.10 7.60 ± 0.10
1 6.55 ± 0.10 6.88 ± 0.10
2 6.04 ± 0.10 6.32 ± 0.10
3 5.56 ± 0.10 5.79 ± 0.10

3.3. Water and Ash Content

Based on (USP) Pharmacopoeia <731>, hard capsules commonly have a water content
of 10%–15%. A thermogravimetric analysis (TGA) method can be used to determine the
water content of hard capsules. A typical TGA method uses 1–2 g of samples (four or more
capsules) crushed into a smaller size of about 2 mm. The samples are then loaded into an
oven and heated to ±2 ◦C of their melting point. The weight after heating is measured
after 1–2 h at a specified temperature, from which the water content can be deducted [36].

USP <281> is used to analyse the ash content of hard capsules as sulphated ash.
The same amount of sample is also used to analyse the ash content of hard capsules.
The samples are ignited at 600 ◦C ± 50 ◦C for 30 min, cooled in a desiccator and fi-
nally weighed [37]. The water and ash content of standard gelatine hard capsules are
10.5% ± 1.5% and 1.5% ± 0.5%, respectively [38], whereas a water content of 6%–7% is
reported for HPMC hard capsules [30]. Water and ash contents have not been reported so
far for carrageenan-based hard capsules.

3.4. Microbial Limit Test

As an edible agent, it is crucial that a drug-delivery system not contain any harmful
microorganisms. Therefore, USP <61> suggests a microbial enumeration test to examine the
microbiological content in a sample. The microorganisms that can be detected by using this
method are Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans
and Aspergillus niger [39]. Analysis of various samples in the United States has shown
contents of 16.98% for Micrococcaceae in empty hard gelatine capsules and about 24.53% for
Bacillaceae in finished hard gelatine-capsule products (Table 7) [40]. It is also known that
pure HPMC film does not exhibit any microbial activity except in films that contain food
preservatives [41]. Table 7 summarises the properties of carrageenan, carrageenan-based
blends, HPMC and gelatine, which show the virtues and potential of carrageenan to replace
gelatine capsules.



Polymers 2021, 13, 2666 7 of 20

Table 7. Comparison of hard-capsule properties.

No Property Carrageenan Ref. Carrageenan-Based Ref. HPMC Ref. Gelatine Ref.

1 Water and Ash
Content N/A - N/A - Water content:

6%–7% [30]

Water content:
10.5% ± 1.5%
Ash content:
1.5% ± 0.5%

[38]

2 Microbial Activity N/A - N/A -
HPMC film does not
contain any
microbial activity

[41] 16.98% Micrococcaceae and
24.53% Bacillaceae [40]

3 Viscosity 1291.84 cP at 80 ◦C and
cooked for 30 min [42] N/A - ≤100.00 cP [43] 25.6 cP at 25.5 ◦C [44]

4 Swelling Degree N/A 529.23% ± 128.10% [13] N/A - 145.5% ± 86.04% [13]

5 Mechanical
Properties 39.34 ± 0.51 MPa [45] N/A - 19.90 ± 1.20 MPa [34] 31.03 ± 0.74 MPa [45]

6 Surface Morphology
by SEM

No pores at 5000×
magnification [13]

Pores observed on
the surface at 200

nm
[46] No pores at 30-µm scale [41] No pores at 200 nm scale [46]

7 Molecular Weight 193 kDa to 324 kDa [47] N/A - 10 kDa to 22 kDa [48] 7.1 kDa to 131.6 kDa [49]

8 Thermal Properties
Five stages decomposition:

90 ◦C, 192 ◦C, 245 ◦C,
350 ◦C and 780 ◦C

[50] N/A - Tg = 280 ◦C–300 ◦C [51] One-stage decomposition; Tg
= 90–92 ◦C [52]

9 Fingerprint
Spectrum on FTIR 1248, 930, 847 and 805 cm−1 [13]

Additional
fingerprint peaks
will be detected

[13,33,53,54] 1053 cm−1 and 944 cm−1 [55] 3600–2700 cm−1, 1900–900
cm−1 and 400–900 cm−1 [56]

10 Disintegration Rate N/A – 18.47 ± 0.19 min in
deionised water [13] 16 ± 5 min in human body [57] 12 ± 4 min in the human

body [57]

N/A = Not Available.
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3.5. Viscosity

Polymers similar to carrageenan can form gel solutions with a high viscosity index.
To measure its viscosity, ASTM D3616-95 suggests that the sample be mixed in a suitable
solvent for 16 to 20 h to produce a sol. The sol is removed from the mixture, and the
viscosity of the solution is determined. By using this method, the swelling index of the gel
can also be determined [58].

Viscosity analysis helps to predict the compactibility of a molecule. For example, a
highly soluble arabinogalactan gives a low-viscosity solution due to the relatively small
hydrodynamic branched structure [59]. In the production of semi-refined carrageenan,
viscosity is one of the main criteria for producing the best quality product. It is also known
that viscosity can be affected by the temperature and acidity of the medium [42].

Adam et al. stated that a solution with a viscosity >600 cP would support the formation
of hard capsules by the dipping method [4] because it is essential for the polymer to adhere
to the pins during the drying process and produce a uniform capsule with an appropriate
shape [60]. This viscosity property is also useful in the development of crosslinked hard
capsules in which crosslinking reduces the solubility of the capsules and extends the
drug-release time [61].

It was reported that the optimum viscosity of semi-refined carrageenan is 1291.84 cP
at 80 ◦C and heated for 30 min [42]. Compared with a gelatine solution with a viscosity
of 25.60 cP at 25.5 ◦C [44], a carrageenan-based solution has good potential for use as a
drug-delivery system. Another candidate is HPMC, with its hydrophilic nature that helps
form a gel with very low viscosities of ≤100.00 cP (Table 7) [43], which enables immediate
release from the pins in the dipping method [62].

3.6. Swelling Degree (SD)

Swelling is a kinetic process of mass transport and mechanical deformation governed
by the interaction between the polymer network and the solvent [63]. In SD analysis,
a capsule is soaked in 100 mL of the medium at 37 ◦C ± 0.5 ◦C. The samples’ weights
were measured during the hydrolysis process in which the chemical bonding between
particles of the samples is degraded, and then the particles are surrounded by the solvent
particles [13,64–68]. On the other hand, dissolution is a process in which the solute disperses
in a solvent at the molecular level.

When a hydrophilic polymer is in contact with water, penetration of the water into the
polymer occurs through a diffusion process. Penetration of water causes the polymer to
swell, and some of the polymer particles will then be reduced in size (chemical degradation)
that eventually leads to the full dissolution of the polymer. The times required for different
polymer particles to dissolve in water are known as dissolution kinetics. The process of
drug dissolution and release from the polymer is known as kinetic release [69,70].

This analysis could give a good indication of whether or not seaweed-based hard
capsules have better durability to dissolution in water than other types. There is no
standard for SD in the production of hard capsules that we are aware of to date. Fauzi et al.
found that the maximum SD of κ-carrageenan-based hard capsules (529.23% ± 128.10%)
was larger than that of gelatine (145.50% + 86.04%) (Table 7), which indicated that the
disintegration rate was higher for κ-carrageenan-based hard capsule than for gelatine
because of its ability to inhibit the penetration of the solvent [1]. The SD of a material can
be expressed by dividing the difference between the mass of the material (mf) after soaking
and the mass before soaking by its initial mass (m0) [71].

SD =
m f −m0

m0
(1)

Distantina et al. reported the SD of κ-carrageenan crosslinked with glutaraldehyde
film and found that the κ-carrageenan film attained equilibrium swelling in water at about
30 min. When glutaraldehyde was added to crosslink the material, the equilibrium time
was decreased significantly; wherein the crosslinked film might absorb water without
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dissolution [71]. Another study conducted by Estrada et al. showed that the SD for
a combination of a multi-walled carbon nanotube and a κ-carrageenan hydrogel was
lower than that of a blank κ-carrageenan hydrogel. This result was probably due to
the reinforcement of the hydrogel structure promoted by the nanotubes that led to the
formation of a tighter gel network, which lowered the SD [67].

Analysis of SD can be performed to determine the swelling kinetics of materials, a key
analysis in the characterisation of crosslinked material [72]. For example, Aydinoğlu [73]
investigated the swelling kinetics of novel poly(acrylamide-co-acrylic acid) hydrogels with
spirulina and found that spirulina had a strong influence on the swelling kinetics due to
its interaction with the acrylic acid units that influenced the acidity of the medium. In
addition, SD analysis can also be related to the diffusion mechanism in which a material
will be dissolved by the end of the swelling process [74].

3.7. Mechanical Properties

Tensile properties indicate how the material reacts to forces under tension. Tensile
tests are used to determine the modulus of elasticity, elastic limit, elongation, proportional
limit, tensile strength, yield point, yield strength, work of rupture and many other useful
tensile properties [75]. According to ASTM D638, the test can be performed by applying
a tensile force to a sample specimen and measuring various properties of the specimen
under stress [76].

The test is performed by mounting the specimen in the form of a film in a machine
and subjecting it to tension. The tensile force is recorded as a function of increased gauge
length (Figure 4). When a material reaches its flexibility limit, it will no longer be able to
return to its normal shape; i.e., it undergoes deformation, which can be seen in an A–B
pathway (Figure 4) [77].
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Generally, the tensile properties of a polymer can be improved by adding a crosslink-
ing agent to a polymer matrix [78]. Alvarado et al. investigated the tensile strength
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of a composite film made of chitosan, fish gelatine and microbial transglutaminase and
concluded that the tensile strength decreased with an increase in gelatine content. This
result was caused by the degree of deacetylation that affected the physical (e.g., tensile
strength), chemical and biological properties of chitosan [79]. In the carrageenan-based film
development, it was found that tensile strength values were higher for κ-carrageenan films
(39.34 ± 0.51 MPa) than for gelatine (31.03± 0.74 MPa) [45] and HPMC (19.90 ± 1.20 MPa)
films (Table 7) [34]. This finding suggests that the hard capsules prepared from carrageenan
would be stronger than those from gelatine and HPMC.

Good mechanical properties assure better quality control in capsule manufacturing,
i.e., by making it easier to produce a uniform weight and prevent oxidation or hydrolysis,
leading to poor stability. Moreover, in the quality control process of a product, the capsules
with optimum tensile strength will have good flexibility [80,81].

3.8. Surface Morphology Analysis Using Scanning Electron Microscopy (SEM)

SEM has been used worldwide in many disciplines and is recognised as an effective
method for image analysis of organic and inorganic materials on a nanometer to micrometre
scale. SEM works at a magnification scale of up to 50,000× [82] and even 1,000,000× in the
latest models to produce extremely detailed images of a wide range of materials [83].

The scanning was performed by using high voltage (1.0–25 kV) to accelerate the
secondary electrons between the anode and cathode. This process produces an enlarged
image of the subject’s surface. The magnification is shown by a ‘times’ symbol (X); e.g.,
1000× means 1000-fold magnification [84]. To prepare the material to be analysed by SEM,
it can be prepared as a film [4,13,85]. The preparation of a film depends on the physical
properties of the material itself. For example, Li et al. applied a solution of a mixture of
pectin–chitosan complex plasticised by sorbitol onto an acrylic glass plate and dried at
50 ◦C to make a film [86].

As reported by Fauzi et al. [13], both carrageenan and carrageenan, crosslinked with
maltodextrin and plasticised by sorbitol films, exhibited invisible pores even at 5000×
magnification. This result supported what was observed by Król et al. [46]. A carrageenan
film showcased pores observed on its surface at the imaging scale of 200 nm, whereas no
pores were observed on the surface of gelatine film at that scale. Thus, carrageenan pores
are bigger than gelatine pores. Pure HPMC film has a smooth surface, which may imply a
less ductile film, as well as a homogeneous and uniform matrix with no pores observed at
the scale of 30 µm (Table 7) [41].

The presence of pores and their sizes may be related to the matrix mechanical proper-
ties. For example, the presence of a crosslinking agent would decrease the size of pores and
hence make the matrix stiffer, whereas adding a plasticiser would achieve the opposite [67].
In addition, these interactions should be confirmed by Fourier-transform infrared (FTIR)
spectroscopy from observation of new bond formation due to crosslinking or emergence
of new peak(s) from plasticiser functional group(s) [87]. By controlling the pore size of a
matrix, the rate of diffusion of the solvent into the matrix could be affected as well [1]. This
way, the disintegration rate of a hard capsule could be predicted on the basis of the SEM
analysis of the matrix surface. Other aspects should also be considered in determining the
disintegration rate, such as the SD. As mentioned above, the SD of carrageenan-based hard
capsules is larger than that of gelatine-based capsules, making the disintegration rate of
the former faster [13].

3.9. Molecular Weight (MW)

Using more modern analytical methods, such as gel permeation chromatography
(GPC), polymer MWs of 10,000 g·mol−1 to 400,000 g·mol−1 can be determined fairly ac-
curately [88]. Examples of high MW bio-polymers include gum Arabic [4], gelatine [88],
lignin [89] and carrageenan [90,91]. An example of MW determination of carrageenan was
reported by Uno et al., who found that the number average MWs of these carrageenans
ranged from 193 kDa to 324 kDa [47]. It is also known that the MWs of HPMCs ranged from
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10 kDa to 22 kDa, depending on the percentage of methyl and hydroxypropyl substitu-
tions [48]. Compared with gelatine, with MWs ranging from 7.1 kDa to 131.6 kDa [49] and
HPMC, carrageenans have more potential for controlled modification of their structure and
MW through the formation of pre-designed oligomers to develop a better drug-delivery
system (Table 7).

GPC is also useful for dissolution studies of polymers in an organic solvent. This tech-
nique can help assess the degree of polymerisation and the number of monomer subunits
that a polymer contains [92]. Therefore, this technique was used to characterise a composite
of seaweed-based hard capsules with various components, such as the carrageenan-based
hard capsules that Fauzi et al. [13] developed. However, the drawback of this technique is
that there may be possible interactions between the sample material and column fillers that
could interfere with the analysis [92].

3.10. Thermal Properties

Thermal characterisation, in which differential scanning calorimetry (DSC) and TGA
are used in combination is an important method for studying a material’s behaviour under
temperature change. DSC measures the chemical or physical transition of a material
when the temperature is increased or decreased following ASTM D3418-12, in which a
sample is heated or cooled under a specified purge gas at a certain flow rate. The energy
changes in the material are marked by the absorption or release of energy, resulting in
endothermic or exothermic peaks [93]. This process changes the state of matter, and
melting and crystallisation processes are some of the important indicators in DSC and
TGA. A melting point (Tm) is confirmed both theoretically and experimentally to indicate
at what temperature reduction in particle size and significant reduction in viscosity (and
hence melting) occurs. On the other hand, the glass transition point (Tg) describes the
temperature at which the mechanical properties of a material change from hard and brittle
to soft, deformable or rubbery [94]. In addition, a new peak in FTIR spectroscopy can
represent bond formation in a crosslinked system that may result in the change in Tm
and/or Tg in DSC analysis [95]. On the other hand, TGA measures the mass change of
a material during a process, such as decomposition, due to the temperature change, in
accordance with ASTM E1131-08 [96]. Therefore, a combination of both DSC and TGA data
provides fundamental information about the thermal properties and chemical structure of
a material [97].

In gelatine-capsule analysis, thermal changes are correlated with Tg to determine its
hardness. It was found that water was the determining factor for the equilibrium of the
gelatine network formation within a short period of time [98] and that the inhibition of
water evaporation could reduce capsule damage [99]. Bigi et al. observed that the Tg of
dried gelatine film occurred at 90 ◦C–92 ◦C [52], with a one-stage decomposition feature of
15% weight loss observed by TGA [100]. On the other hand, Perfetti et al. observed a much
higher Tg, i.e., 280 ◦C–300 ◦C, of HPMC film [51] (Table 7), expanding its thermomechanical
stiffness for hard-capsule applications.

Mahmood et al. found that carrageenan experienced five stages of decomposition: at
90 ◦C, 192 ◦C, 245 ◦C, 350 ◦C and 780 ◦C (Table 7). The decompositions occurred in different
stages due to the presence of moisture, sulphate groups and carbohydrate backbone
fragmentations [50]. Kianfar et al. formulated a carrageenan-based drug-delivery system
for ibuprofen, and DSC and TGA were used as some of the characterisation techniques.
The TGA showed that the residual water content of the film was 5 wt.%, whereas DSC
showed that the crystallisation point of ibuprofen was −53.87 ◦C. No reports of the Tg
of carrageenan were found. These results, with other supporting analyses, indicated that
carrageenan mixed with other polymers could be a potential drug-delivery system for
buccal drug delivery [101]. In another reference, DSC confirmed that the presence of a
heterogeneous polymer network in a carrageenan-based drug-delivery system provided
a tunable diffusion rate [102]. This heterogeneity can be achieved by adding either a
potassium cation for a slower diffusion rate or a sodium cation for a faster diffusion rate to



Polymers 2021, 13, 2666 12 of 20

the gels [103]. The aforementioned information shows that DSC and TGA are helpful for
designing better drug-delivery systems.

3.11. Fourier-Transform Infrared Spectroscopy (FTIR)

Vibrational spectroscopy is a valuable investigative tool because it provides infor-
mation about the bond formation or loss, structural rearrangements and other molecular
properties of materials [104]. FTIR is useful for characterising the potential interactions
in the chemical structures of capsule materials [105]. By using FTIR along with nuclear
magnetic resonance, DSC [95] and near-infrared analysis, the crosslinking between polymer
chains can be studied well [104].

Based on ASTM 168, a sample’s absorbance of infrared light produces a unique FTIR
spectral fingerprint specific to a class of material [106]. An extracted fish gelatine in
acetic acid, for example, shows three major peaks at 3600–2700 cm−1, 1900–900 cm−1 and
400–900 cm−1 that indicate the presence of amide groups because gelatine is essentially a
protein (Table 7) [56]. For HPMC, the unique peaks observed at 1053 and 944 cm−1 are
associated with an alkyl-substituted cyclic ring containing an ether linkage [55] (Table 7).
Hard capsules made of κ-carrageenan have fingerprint region peaks at 1248, 930, 847 and
805 cm−1 (Table 7). When the κ-carrageenan was crosslinked with maltodextrin, the peak
at 1248 cm−1 was broadened, which indicated a crosslink had formed [13]. In addition,
Table 8 shows that the combination between two polymers could significantly change the
IR band. The change can be in the form of band shifting [33,53], peak shape [13] or even
new peak formation [4]. These changes depend on the way the polymers interact with each
other. For example, He et al. stated that the higher the concentration of the locust bean
gum blended with κ-carrageenan, the greater the shift of the O–H stretch band [33]. Thus,
FTIR characterisation is useful for determining the interactions between two polymers for
the development of drug-delivery carriers.

Table 8. FTIR spectral band of seaweed-based material.

Raw Material (Cited Reference) Modified Material (Cited Reference)

κ-Carrageenan

- D-galactose-4-sulphate 842–847 cm−1

[13,54,59,104,105]
- 3,6-anhydro-D-galactose 925 to 930 cm−1

[13,54,59,104,105]
- C–O and C–C stretching of pyranose ring 1033-

to 1038 cm−1 [54,59,106]
- Sulphate ester 1219–1248 cm−1 [54,59,106]
- Free OH, SO2 and NH groups stretching

vibrations 3323 to 3331 cm−1 (broad)
[54,59,106]

ι-Carrageenan

- Additional sulphate ester 805 cm−1 [105]
- D-galactose-4-sulphate 845 cm−1 [105]
- 3,6-anhydro-D-galactose 930 cm−1 [105]

λ-Carrageenan

- High sulphate content 820–830 cm−1

(broad) [105]
- D-galactose-4-sulphate 845 cm−1 [105]
- 3,6-anhydro-D-galactose 930 cm−1 [105]

κ-Carrageenan crosslinked with corn starch [53]

- Shifted glycosidic linkages 1038 cm−1 to
1028 cm−1

- Shifted C–O bond stretching of corn starch
1150 cm−1 to 1152 cm−1

- Shifted sulphate ester 1219 cm−1 to 1236 cm−1

κ -Carrageenan blended with locust bean gum [33]

- Shifted O–H stretching of hydroxyl groups
because of an increase in hydrogen bond
3458 cm−1 to 3438 cm−1

κ-Carrageenan crosslinked with maltodextrin and
plasticised with sorbitol [13]

- Broadened sulphate ester band 1248 cm−1

κ-Carrageenan crosslinked with Arabic gum [54]

- A new band of sulphate esters 400 cm−1

- A new band of glycosidic linkage 1034 cm−1

Thermal properties and SEM can also be used to confirm the formation of crosslinking,
complementing FTIR results. Distantina et al. stated that the presence of glutaraldehyde
as a crosslinking agent to carrageenan improved its thermal stability. The control sample
showed an endothermic peak at 91 ◦C and an exothermic peak at 167 ◦C. When glutaralde-
hyde was added, the endothermic and exothermic peaks both increased to 96 ◦C and 172 ◦C,
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respectively [71]. Meng et al. showed that the presence of calcium ion, as a crosslinking
agent for carrageenan, increased the surface roughness of the film, as shown in SEM images.
Other effects of crosslinking include an increase in the thermal decomposition onset, as
observed in TGA thermograms [107].

4. Disintegration Process

Complete disintegration of a capsule is defined as the state in which no residue of
the unit, except fragments of insoluble coatings or capsule shells, remains on the screen
of the test apparatus and is a soft mass with no palpably firm core [108]. In other words,
it is a mechanical breakdown process of a material that forms smaller sizes in a solvent
without changing the chemical structure of the material (Figure 5) [1]. Disintegration and
swelling are two connected processes. Swelling occurs when a material is penetrated by
a solvent and expands. When the swelling process reaches its maximum capacity, the
material disintegrates [109].
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There are at least two different definitions of disintegration that can be adopted
depending on the purpose of the research. Based on the USP-32 General Chapter <2040>,
the disintegration process refers to the rupture of the drug-delivery system, i.e., the opening
of soft-shell capsules [110]. Another definition that is favoured recently and recommended
by the European Pharmacopoeia (Ph. Eur) 21 and USP 108 is that ‘disintegrated’ means
that the material needs to be completely unobserved by the unaided eye [111]. The first
method will need an additional agent, such as lactose [4], to help the observation, and
the disintegration is stated to begin when the release of the agent is first observed. On
the other hand, the second method does not need an additional agent and will need a
longer observation time since the disintegration requires that the material be completely
invisible by unaided eyes [112]. Based on a comparison, it is suggested to use the full
disintegration (second) method since there is no additional agent that may affect the
disintegration process.

This disintegration analysis is useful to determine the quality of a drug-delivery
system since the purpose of such a system is to deliver a drug into the body and release
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it at a certain time [21,108]. Disintegration analysis can be performed in vivo [113] or
in vitro [114]. Different materials will exhibit different disintegration times. For example,
HPMC hard capsules will disintegrate within 16 ± 5 min, whereas gelatine hard capsules
will take 12 ± 4 min in the human body [57]. Modification of the structure of carrageenan-
based hard capsules can lead to various disintegration times. For instance, carrageenan–
alginate hard capsules will be disintegrated in deionised water within 12.80 ± 1.43 min,
whereas carrageenan–amylum hard capsules will take 25.79± 2.92 min [9] and carrageenan–
maltodextrin hard capsules will take 18.47 ± 0.19 min [13].

Disintegration time, a potentially major barrier in facilitating drug release, is an impor-
tant property for a capsule. Disintegration time depends on the packaging materials, filling
materials, preparation process, pharmaceutical excipient properties and manufacturing
process of the product. If a slow disintegration time is needed, then a carrageenan–amylum
formulation can be employed; otherwise, a carrageenan–alginate formulation can be used
for a faster disintegration time.

5. Dissolution Process and Release Kinetics of Drug-delivery Systems

In 1931, Hixson and Crowell [115] developed a dissolution concept in which the
surface area is equal to the mass of the material (ω). With the assumption of a constant
change in concentration, the Hixson–Crowell Equation is expressed as follows:

ω
1
3
0 −ω

1
3
f = kt (2)

where ω0 and ωf are the initial mass and the mass at time t, respectively, and k is a constant.
Noyes and Whitney [116] continued in early 1990 by conducting an experiment that

would be the foundation of dissolution analysis. They put a sample material in a glass
cylinder and then dipped it into the water in a glass bottle. From the experiment, Noyes
and Whitney derived the Noyes–Whitney Equation as follows:

dx
dt

= C(S− x) (3)

where S represents the solubility of the material, x is the concentration at time t and C is
a constant.

The concept of drug release was developed by Higuchi [117,118] and is now consid-
ered to be an important parameter for determining the performance of a drug-delivery
system. The drug-release kinetics connect the concepts of the diffusion process and disso-
lution process. The equation below expresses the Higuchi formula of drug-release kinetics:

q(t)
q∞

= K
√

t (4)

where q∞ is the cumulative amount of the drug released at infinite time, q(t) is the cumula-
tive amount of the drug at time t and K is the Higuchi constant. This model is useful for
studying the formulation of a drug-delivery system matrix.

The non-Fickian diffusion concept was initially proposed by Frisch et al. [119] in which
there was a deficiency in Fick’s diffusion for a swollen polymer, also known as a glassy
polymer. The concept was then developed by Ritger and Peppas [120], who developed the
Peppas–Ritger equation (also known as the Power Law equation):

Mt

M∞
= ktn (5)

where M∞ is the cumulative amount of the drug released at infinite time, Mt is the cumula-
tive amount of the drug at time t and n is the diffusion exponential of the drug released.
Such an exponential term (n) can generally be used to describe the diffusion mechanism of
a material (Table 9) [121].
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Table 9. Diffusion exponential and release mechanism of a material.

Diffusion Exponent (n)
Mechanism

Film Cylinder Sphere

0.50 0.45 0.43 Fickian Diffusion
0.50 < n < 1.00 0.45 < n < 0.89 0.43 < n < 0.85 Anomalous Transport

1.00 0.89 0.85 Case-II Transport

>1.00 >0.89 >0.85 Supercase-II
Transport

When a drug-delivery system exhibits a non-Fickian diffusion mechanism, analysis
using the Peppas–Sahlin equation [122] could be used:

Mt

M∞
= k1tn + k2t2n (6)

where M∞ is the cumulative amount of the drug released at infinite time, Mt is the cumula-
tive amount of the drug at time t, n is the diffusion exponential of the drug released, k1 is
the diffusion constant and k2t2n is the non-Fickian contribution caused by the relaxation
process of a swollen polymer. This equation is ideal for analysing the 60% release point of
a drug.

Other release-kinetics models were developed to help determine the release mecha-
nism of a material. A zero-order model was analysed in detail by Varelas et al. [123], and
the equation is expressed as follows:

Q1 = Q0 + k0t (7)

where Q1 is the dissolved material at time t, Q0 is the initial concentration of the material
and k0 is the zero-order constant. This model is recommended for a transdermal matrix
drug-delivery system. Another model to be mentioned is the first-order release-kinetics
model [124], derived from the Noyes–Whitney equation, as shown in equation 8. Qt is
the dissolved material at time t, Q0 is the initial concentration of the material and k1 is the
first-order constant.

ln Qt = ln Q0 + k1t (8)

The mentioned equations might be used to evaluate the best release mechanism of a
drug from a matrix. To ensure this further, statistical evaluation should be used, such as
the Akaike Information Criterion [67]. The derived mechanism will help us to understand
how a drug is released from a matrix to evaluate its potential as a drug-delivery system.

Carrageenan-based capsules have better solubility at pH 4.5 than at pH 1.2 or pH 6.8
because the citrate buffer, used as the medium that imitates human body fluid, interacts
better with the polymer. The best adopted drug-release kinetic mechanism for this capsule
was Peppas–Sahlin model at pH 1.2 and 4.5. The capsules are released completely in 40
min in acidic environments, indicating that the capsules have good potential for use with
oral drugs [13].

6. Conclusions

Exploration in the development of hard capsules with the goal of replacing gelatine
for drug-delivery systems is progressing. Some of the alternative materials that were
studied are alginate, carrageenan, HPMC and cellulosic fibre. The production of hard
capsules is performed in six major steps: dipping, spinning, drying, stripping, trimming
and joining. Comparing properties of carrageenan, HPMC and gelatine, by using several
characterisation methods, such as GPC, SEM, FTIR, thermal, SD analysis, mechanical
analysis, viscosity analysis, disintegration, dissolution and release-kinetics analysis were
presented to determine the best option for replacing gelatine as the principal constituent in
a drug-delivery system. Despite being in the early developmental stage in which further
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investigations are needed, carrageenan-based hard capsules have properties comparable to
those of gelatine and show good potential as an alternative to gelatine hard capsules due to
its ability to be modified with other polymers to make a composite with the targeted prop-
erties for a better drug-delivery system. Finally, based on the research and development of
carrageenan-based hard capsules our research groups have conducted, we are currently in
the process of implementing scale-up to work towards semi-commercial production.
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