Influence of Flame Retardant Impregnation on Acoustic and Thermophysical Properties of Recycled Technical Textiles with the Potential for Use in Wooden Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acoustic Properties
2.2. Thermophysical Properties
3. Results and Discussion
3.1. Results and Discussion of Acoustic Properties
3.2. Results and Discussion of Thermal Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sartori, I.; Hestnes, A.G. Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy Build. 2007, 39, 249–257. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S.A. Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Ciambrone, D.F. Environmental Life Cycle Analysis; CRC Press: Boca Raton, FL, USA, 1997; p. 160. [Google Scholar]
- Al-Homoud, M.S. Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Snow, F.J. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASH RAE) Thermographic Standard 101 P. Int. Soc. Opt. Photonics 1982, 313, 94–99. [Google Scholar]
- Tereňová, Ľ.; Dúbravská, K.; Štefková, J. Natural Thermal Insulation Materials in Timber Building Constructions and Their Influence on Fire Resistance. Delta 2019, 13, 95–99. [Google Scholar] [CrossRef]
- Cetiner, I.; Shea, A.D. Wood waste as an alternative thermal insulation for buildings. Energy Build. 2018, 168, 374–384. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Martellotta, F. Performance Characterization of Broad Band Sustainable Sound Absorbers Made of Almond Skins. Materials 2020, 13, 5474. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, Ľ. Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polym. Basel 2020, 12, 1012. [Google Scholar] [CrossRef]
- Tudor, E.M.; Scheriau, C.; Barbu, M.C.; Réh, R.; Krišťák, Ľ.; Schnabel, T. Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay. Appl. Sci. Basel 2020, 10, 5594. [Google Scholar] [CrossRef]
- Eurostat. Circular Material Use Rate by Material Type. Available online: https://www.enviroportal.sk/indicator/detail?&id=3603&print=yes (accessed on 29 September 2020).
- STERED Materials (Vstupný Material). Available online: http://www.stered.sk/material-na-spracovanie (accessed on 26 August 2020).
- Wang, Y. Recycling in Textiles; Woodhead Publ and CRC Press: Cambridge, UK, 2006; p. 229. [Google Scholar]
- Bourguiba, A.; Touati, K.; Sebaibi, N.; Boutouil, M.; Khadraoui, F. Recycled duvets for building thermal insulation. J. Build. Eng. 2020, 31, 101378. [Google Scholar] [CrossRef]
- Tilioua, A.; Libessart, L.; Lassue, S. Characterization of the thermal properties of fibrous insulation materials made from recycled textile fibers for building applications: Theoretical and experimental analyses. App. Therm. Eng. 2018, 42, 56–67. [Google Scholar] [CrossRef]
- Gounni, A.; El Wazna, M.; El Alami, M.; El Bouari, A.; Cherkaoui, O.; Mabouk, M.T.; Kheiri, A. Thermal Performance Evaluation of Textile Waste as an Alternative Solution for Heat Transfer Reduction in Buildings. J. Sol. Energy T. ASME 2018, 140, 21004. [Google Scholar] [CrossRef]
- Barbanera, M.; Belloni, E.; Buratti, C.; Calabro, G.; Marconi, M.; Merli, F.; Armentano, I. Recycled leather cutting waste-based boards: Thermal, acoustic, hygrothermal and ignitability properties. J. Mater. Cycles Waste 2020, 22, 1339–1351. [Google Scholar] [CrossRef]
- Rubino, C.; Bonet Aracil, M.; Gisbert-Paya, J.; Liuzzi, S.; Stefanizzi, P.; Zamorano Canto, M.; Martellotta, F. Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials 2019, 12, 4020. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.G.K.; Weerasinghe, D.U.; Wijesinghe, K.A.P.; Kalpage, K.M.D.M.P. Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manag. 2018, 79, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Plesník, J. STERED® Unique Technology from Slovakia (Unikátna Technológia zo Slovenska). Available online: http://www.odpadoveforum.cz/TVIP2015/prispevky/209.pdf?fbclid=IwAR2fuLNylsKqQxU6ubF6WuFYCrStSHf_KCp_Sesxy7yr-ajIsvPSQr46DkQ (accessed on 26 September 2020).
- Vasile, S.; Van Langenhove, L. Automotive industry a high potential market for nonwovens sound insulation. J. Text. Appar. Technol. Manag. 2004, 3, 1–5. [Google Scholar]
- Danihelová, A.; Němec, M.; Gergeľ, T.; Gejdoš, M.; Gordanová, J.; Sčensný, P. Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber. Sustain. Basel 2019, 11, 2968. [Google Scholar] [CrossRef] [Green Version]
- Osvaldová, L. Retardéry horenia. Arpos 2005, 1, 18–21. [Google Scholar]
- Reinprecht, L. Wood Deterioration, Protection and Maintenance; John Wiley & Sons, Ltd.: Chicheter, UK, 2016; p. 357. [Google Scholar]
- Safety Data Sheet According to 91/155 EEC, ECOGARD® B45, Wien. 2009. Available online: https://www.tuchler.net/ftp/SICHERHEITSDATENBLATT/2856.pdf (accessed on 16 July 2021).
- Safety Data Sheet According to 91/155 EEC, ISONEM® ANTI-FIRE SOLUTION, Izmir, Turkey 2018. Available online: https://www.isonem.com/industrial-chemicals/isonem-anti-fire-solution-79n351 (accessed on 16 July 2021).
- Safety Data Sheet according to Regulation (EC), No. 2015/830, HR-Prof, Tallin, Estonia. 2019. Available online: https://www.fireretardantuk.com/hr-prof-technical-info/ (accessed on 16 July 2021).
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier: London, UK, 2006; p. 535. [Google Scholar]
- The International Organization for Standardization (ISO). ISO 10534-2: Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedances Tubes. Part. 2: Transfer-Function Method; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Morgans, R.C.; Li, X.; Zander, A.C.; Hansen, C.H. Statistics and the Two Microphone Method for the Measurement of Sound Absorption Coefficient. Proc. Acoust. 2004, 15, 3–5. [Google Scholar]
- Padhye, R.; Nayal, R. Acoustic Textiles; Springer Singapore: Melbourne, Australia, 2016; p. 242. [Google Scholar]
- Malinarič, S. Parameter estimation in dynamic plane source method. Meas. Sci. Technol. 2004, 15, 79–82. [Google Scholar] [CrossRef]
- Ružiak, I.; Igaz, R.; Krišťák, Ľ.; Gajtanska, M. Heat Technique properties of Wood Based Materials in the Wooden Houses (Tepelno-technické Vlastnosti Materiálov na Báze Dreva v Drevostavbách); Technical University in Zvolen: Zvolen, Slovakia, 2017; p. 105. [Google Scholar]
- Igaz, R.; Krišťák, Ľ.; Ružiak, I.; Gajtanska, M.; Kučerka, M. Thermophysical properties of OSB boards versus equilibrium moisture content. BioResources 2017, 4, 8106–8118. [Google Scholar] [CrossRef]
- Kristak, L.; Ruziak, I.; Tudor, E.M.; Barbu, M.C.; Kain, G.; Reh, R. Thermophysical Properties of Larch Bark Composite Panels. Polymers 2021, 13, 2287. [Google Scholar] [CrossRef]
- Gergeľ, T. Acoustic characteristics of cross laminated timber. Dissertation Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2017. [Google Scholar]
- Gergeľ, T.; Kamenská, V.; Oravcová, J.; Kačíková, D.; Danihelová, A.; Němec, M. Potential of recycled fabric utilization in terms of fire protection and acoustics. In Proceedings of the International Conference Fire Protection, Safety and Security, 1st ed.; TU in Zvolen: Zvolen, Slovakia, 2017; pp. 57–63. [Google Scholar]
- The International Organization for Standardization (ISO). ISO 11654:1997: Acoustics. Sound Absorbers for Use in Buildings. Rating of Sound Absorption; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Tiuc, A.-E.; Vermeşan, H.; Gabor, T.; Vasile, O. Improved Sound Absorption Properties of Polyurethane Foam Mixed with Textile Waste. Energy Proced. 2016, 85, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Buratti, C.; Belloni, E.; Lascaro, E.; Lopez, G.A. Sustainable Panels with Recycled Materials for Building Applications: Environmental and Acoustic Characterization. Energy Proced. 2016, 101, 972–979. [Google Scholar] [CrossRef]
- Tiuc, A.-E.; Vasile, O.; Vermeşan, H.; Platon, M.A. Sound Absorbing Insulating Composites Based on Polyurethane Foam and Waste Materials. Mater. Plast. 2018, 55, 419–422. [Google Scholar] [CrossRef]
- Lyu, L.; Tian, Y.; Lu, J.; Xiong, X.; Guo, J. Flame-Retardant and Sound-Absorption Properties of Composites Based on Kapok Fiber. Materials 2020, 13, 2845. [Google Scholar] [CrossRef] [PubMed]
- Danihelová, A.; Bubeníková, T.; Bednár, M.; Gerge, T. Acoustic properties of selected thermal insulation materials and their contribution to pollution of environment. Akustika 2018, 30, 35–41. [Google Scholar]
- Schiavoni, S.; Alessandro, F.D.; Bianchi, F.; Asdrubali, F. Insulation Materials for the Building Sector. Rev. Comp. Anal. 2016, 62, 988–1011. [Google Scholar]
- STN 73 0540-2+Z1+Z2: Thermal protection of buildings. Thermal performance of buildings and components. Part 2: Functional requirements (Tepelná ochrana budov. Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Časť 2: Funkčné požiadavky). 2019.
- Hadded, A.; Benltoufa, S.; Fayala, F.; Jemni, A. Thermo physical characterisation of recycled textile materials used for building insulating. J. Build. Eng. 2016, 5, 34–40. [Google Scholar] [CrossRef]
- Valverde, I.C.; Castilla, L.H.; Nunez, D.F.; Rodriguez-Senin, E.; de la Mano Ferreira, R. Development of New Insulation Panels Based on Textile Recycled Fibers. Waste Biomass Valoriz. 2013, 4, 139–146. [Google Scholar] [CrossRef]
- Cascone, S.; Evola, G.; Gagliano, A.; Sciuto, G.; Baroetto Parisi, C. Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales. Sustain. Basel 2019, 11, 5592. [Google Scholar] [CrossRef] [Green Version]
ρ/(kg∙m−3) | λ/(W m−1∙K−1) | a·107/(m2∙s−1) | c/(J kg−1∙K−1) | |
---|---|---|---|---|
Ref—without modification | 53.4 ± 3.1 | 0.038 ± 0.001 | 4.53 ± 0.19 | 1559.4 ± 72.0 |
ISONEM® ANTI-FIRE SOLUTION (spraying) | 59.8 ± 5.7 | 0.042 ± 0.001 | - * | - * |
ECOGARD® B45 (spraying) | 58.9 ± 4.1 | 0.039 ± 0.001 | - * | - * |
HR Prof (spraying) | 58.4 ± 2.1 | 0.049 ± 0.003 | - * | - * |
ISONEM® ANTI-FIRE SOLUTION (dipping) | 89.3 ± 7.9 | 0.070 ± 0.002 | 5.96 ± 0.36 | 1316.4 ± 44.5 |
ECOGARD® B45 (dipping) | 98.6 ± 9.9 | 0.047 ± 0.001 | 2.94 ± 0.34 | 1311.7 ± 81.7 |
HR Prof (dipping) | 97.7 ± 7.2 | 0.078 ± 0.002 | 5.33 ± 0.15 | 1498.5 ± 91.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danihelová, A.; Sčensný, P.; Gergeľ, T.; Ondrejka, V.; Němec, M.; Igaz, R.; Štefko, J.; Mitterová, I. Influence of Flame Retardant Impregnation on Acoustic and Thermophysical Properties of Recycled Technical Textiles with the Potential for Use in Wooden Buildings. Polymers 2021, 13, 2598. https://doi.org/10.3390/polym13162598
Danihelová A, Sčensný P, Gergeľ T, Ondrejka V, Němec M, Igaz R, Štefko J, Mitterová I. Influence of Flame Retardant Impregnation on Acoustic and Thermophysical Properties of Recycled Technical Textiles with the Potential for Use in Wooden Buildings. Polymers. 2021; 13(16):2598. https://doi.org/10.3390/polym13162598
Chicago/Turabian StyleDanihelová, Anna, Patrik Sčensný, Tomáš Gergeľ, Vojtěch Ondrejka, Miroslav Němec, Rastislav Igaz, Jozef Štefko, and Iveta Mitterová. 2021. "Influence of Flame Retardant Impregnation on Acoustic and Thermophysical Properties of Recycled Technical Textiles with the Potential for Use in Wooden Buildings" Polymers 13, no. 16: 2598. https://doi.org/10.3390/polym13162598
APA StyleDanihelová, A., Sčensný, P., Gergeľ, T., Ondrejka, V., Němec, M., Igaz, R., Štefko, J., & Mitterová, I. (2021). Influence of Flame Retardant Impregnation on Acoustic and Thermophysical Properties of Recycled Technical Textiles with the Potential for Use in Wooden Buildings. Polymers, 13(16), 2598. https://doi.org/10.3390/polym13162598