A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Manufacturing
2.2. Compression Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, I.; Rosen, D.; Stucker, B. Vat Photopolymerization Processes. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; pp. 63–106. ISBN 978-1-4939-2113-3. [Google Scholar]
- Jiménez, M.; Romero, L.; Domínguez, I.A.; Espinosa, M.D.M.; Domínguez, M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity 2019, 2019, 9656938. [Google Scholar] [CrossRef] [Green Version]
- Diegel, O.; Nordin, A.; Motte, D. A Practical Guide to Design for Additive Manufacturing; Springer: Singapore, 2019; ISBN 978-981-13-8280-2. [Google Scholar]
- Schaedler, T.A.; Carter, W.B. Architected Cellular Materials. Annu. Rev. Mater. Res. 2016, 46, 187–210. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.Y. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- Nagesha, B.K.; Dhinakaran, V.; Shree, M.V.; Kumar, K.P.M.; Chalawadi, D.; Sathish, T. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater. Today Proc. 2020, 21, 916–919. [Google Scholar] [CrossRef]
- Santos, F.A.; Rebelo, H.; Coutinho, M.; Sutherland, L.S.; Cismasiu, C.; Farina, I.; Fraternali, F. Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg. Compos. Struct. 2021, 256, 113128. [Google Scholar] [CrossRef]
- Chu, C.; Graf, G.; Rosen, D.W. Design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 2008, 5, 686–696. [Google Scholar] [CrossRef] [Green Version]
- Park, S.I.; Rosen, D.W.; Choi, S.-K.; Duty, C.E. Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Addit. Manuf. 2014, 1, 12–23. [Google Scholar]
- Helou, M.; Vongbunyong, S.; Kara, S. Finite Element Analysis and Validation of Cellular Structures. Procedia CIRP 2016, 50, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.S. Design of lattice structure for additive manufacturing in CAD environment. J. Adv. Mech. Des. Syst. Manuf. 2019, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Karamooz Ravari, M.R.; Kadkhodaei, M.; Badrossamay, M.; Rezaei, R. Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 2014, 88, 154–161. [Google Scholar] [CrossRef]
- Gautam, R.; Idapalapati, S.; Feih, S. Printing and characterisation of Kagome lattice structures by fused deposition modelling. Mater. Des. 2018, 137, 266–275. [Google Scholar] [CrossRef]
- Al Rifaie, M.; Mian, A.; Srinivasan, R. Compression behavior of three-dimensional printed polymer lattice structures. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1574–1584. [Google Scholar] [CrossRef]
- Rossiter, J.D.; Johnson, A.A.; Bingham, G.A. Assessing the Design and Compressive Performance of Material Extruded Lattice Structures. 3D Print. Addit. Manuf. 2020, 7, 19–27. [Google Scholar] [CrossRef]
- Guerra Silva, R.; Torres, M.J.; Zahr Viñuela, J.; Zamora, A.G. Manufacturing and Characterization of 3D Miniature Polymer Lattice Structures Using Fused Filament Fabrication. Polymers 2021, 13, 635. [Google Scholar] [CrossRef]
- Mohsenizadeh, M.; Gasbarri, F.; Munther, M.; Beheshti, A.; Davami, K. Additively-manufactured lightweight Metamaterials for energy absorption. Mater. Des. 2018, 139, 521–530. [Google Scholar] [CrossRef]
- Ling, C.; Cernicchi, A.; Gilchrist, M.D.; Cardiff, P. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Mater. Des. 2019, 162, 106–118. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Xu, Y.; Zhang, W.; Zhu, J. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing. Front. Mech. Eng. 2019, 15, 319–327. [Google Scholar] [CrossRef]
- Luxner, M.H.; Stampfl, J.; Pettermann, H.E. Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 2005, 40, 5859–5866. [Google Scholar] [CrossRef]
- Keshavarzan, M.; Kadkhodaei, M.; Forooghi, F. An investigation into compressive responses of shape memory polymeric cellular lattice structures fabricated by vat polymerization additive manufacturing. Polym. Test. 2020, 91, 106832. [Google Scholar] [CrossRef]
- Limmahakhun, S.; Oloyede, A.; Sitthiseripratip, K.; Xiao, Y.; Yan, C. 3D-printed cellular structures for bone biomimetic implants. Addit. Manuf. 2017, 15, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Habib, F.N.; Iovenitti, P.; Masood, S.H.; Nikzad, M. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology. Mater. Des. 2018, 155, 86–98. [Google Scholar] [CrossRef]
- Lancea, C.; Campbell, I.; Chicos, L.A.; Zaharia, S.M. Compressive behaviour of lattice structures manufactured by polyjet technologies. Polymers 2020, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Tan, H.F. An effective length model for octet lattice. Int. J. Mech. Sci. 2018, 140, 279–287. [Google Scholar] [CrossRef]
- Thallemer, A.; Kostadinov, A.; Fam, A.; Teo, A. Design exploration of biomorphic freeform unit cells for additively manufactured lattice structures under compressive loads. Proc. Int. Des. Conf. Des. 2018, 3, 1357–1368. [Google Scholar]
- Mueller, B.; Schnabel, T.; Oettel, M.; Toeppel, T.; Gebauer, M. Design for Additive Manufacturing Guidelines and Case Studies for Metal Applications. Fraunhofer Inst. Mach. Tools Form. Technol. IWU 2017. Available online: http://canadamakes.ca/wp-content/uploads/2017/05/2017-05-15_Industry-Canada_Design4AM_141283.pdf (accessed on 8 January 2019).
- Shick, T.M.; Abdul Kadir, A.Z.; Ngadiman, N.H.A.; Ma’Aram, A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J. Bioact. Compat. Polym. 2019, 34, 415–435. [Google Scholar] [CrossRef]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Sljivic, M.; Pavlovic, A.; Ilic, J.; Stanojevic, M.; Todorovic, S. Comparing the accuracy of professional and consumer grade 3D printers in complex models production. FME Trans. 2017, 45, 348–353. [Google Scholar] [CrossRef]
- Szymczyk-Ziółkowska, P.; Łabowska, M.B.; Detyna, J.; Michalak, I.; Gruber, P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern. Biomed. Eng. 2020, 40, 624–638. [Google Scholar] [CrossRef]
- Habib, F.N.; Iovenitti, P.; Masood, S.H.; Nikzad, M. Cell geometry effect on in-plane energy absorption of periodic honeycomb structures. Int. J. Adv. Manuf. Technol. 2018, 94, 2369–2380. [Google Scholar] [CrossRef]
- Uribe-Lam, E.; Treviño-Quintanilla, C.D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of additive manufacturing for the fabrication of cellular and lattice materials: A review. Mater. Manuf. Process. 2021, 36, 257–280. [Google Scholar] [CrossRef]
- Zhou, Q. A Study in Fabricating Microstructures (Part 1). 2015. Available online: https://medium.com/3d-printing-stories/a-study-in-fabricating-microstructures-part-1-f267d298326e (accessed on 20 September 2019).
- Dong, G.; Tang, Y.; Zhao, Y.F. A survey of modeling of lattice structures fabricated by additive manufacturing. J. Mech. Des. Trans. ASME 2017, 139, 100906. [Google Scholar] [CrossRef]
- Shah, P.; Racasan, R.; Bills, P. Comparison of different additive manufacturing methods using computed tomography. Case Stud. Nondestruct. Test. Eval. 2016, 6, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Molnar, I.; Michal, D.; Simon, S.; Morovic, L.; Kostal, P. Design and manufacture of life size human model using material extrusion and vat photopolymerization additive processes. MATEC Web Conf. 2019, 299, 01010. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kumar, R.; Farina, I.; Colangelo, F.; Feo, L.; Fraternali, F. Multi-Material Additive Manufacturing of Sustainable Innovative Materials and Structures. Polymers 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Gümrük, R.; Mines, R.A.W. Compressive behaviour of stainless steel micro-lattice structures. Int. J. Mech. Sci. 2013, 68, 125–139. [Google Scholar] [CrossRef]
- Boniotti, L.; Beretta, S.; Foletti, S.; Patriarca, L. Strain concentrations in BCC micro lattices obtained by AM. Procedia Struct. Integr. 2017, 7, 166–173. [Google Scholar] [CrossRef]
- nTopology. Available online: https://ntopology.com/ (accessed on 6 March 2020).
- Lattice Structures—Mikrostrukturen. 2018. Available online: www.thingiverse.com/thing:2788117 (accessed on 20 September 2019).
- Beijing Tiertime Technology. Technical Data for Tiertime ABS Material. 2017. Available online: https://shop.tiertime.com/wp-content/uploads/2019/04/UP-ABS_Technical_Data_Sheet_eng.pdf (accessed on 20 September 2019).
- Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 2018, 10, 1262. [Google Scholar] [CrossRef] [Green Version]
- Creality 3D Technology. LCD/DLP Photosensitive Resin Product Properties. Available online: www.creality.com/goods-detail/creality-lcd-dlp-photosensitive-resin (accessed on 26 March 2021).
- ASTM. D695—Standard Test Method for Compressive Properties of Rigid Plastics; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM. D1621—Standard Test Method for Compressive Properties of Rigid Cellular Plastics; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997; ISBN 9781139878326. [Google Scholar]
- Tronvoll, S.A.; Elverum, C.W.; Welo, T. Dimensional accuracy of threads manufactured by fused deposition modeling. Procedia Manuf. 2018, 26, 763–773. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, J.; Wu, H.; Xu, B. Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile-butadiene-styrene composites. Polym. Compos. 2020, 41, 60–72. [Google Scholar] [CrossRef]
- Steyrer, B.; Neubauer, P.; Liska, R.; Stampfl, J. Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins. Materials 2017, 10, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Q.; Wang, L.; Dunn, C.K.; Kuang, X.; Duan, F.; Zhang, Z.; Qi, H.J.; Wang, T. Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 2017, 18, 74–83. [Google Scholar] [CrossRef]
Lattice Dimensions | Struts | |||||||
---|---|---|---|---|---|---|---|---|
Unit Cell Type | Height (mm) | Width (mm) | Length (mm) | Diameter (mm) | Length (mm) | Overhang Angle (°) | Cell Size (mm) | |
CVC | Cube vertex centroid | 31 | 31 | 31 | 0.70 | 4 | 45 | 5 |
CD | Cubic diamond | 34 | 34 | 34 | 0.70 | 2.5 | 65 | 3 |
CF | Cubic fluorid | 33 | 33 | 33 | 0.70 | 2.5 | 65 | 4 |
TV | Tet vertex centroid | 30 | 30 | 30 | 0.70 | 3 | 55 | 5.5 |
HPV | Hex prism vertex | 34 | 34 | 34 | 0.70 | 5 | 60 | 4.5/6.5 |
TOV | Tet oct vertex centroid | 31 | 31 | 31 | 0.70 | 3/3/4.5 | 0/55/90 | 4.5/6.5 |
HPD | Hex prism diamond | 34 | 34 | 39 | 0.70 | 3/2 | 65/90 | 3/5 |
HPL | Hex prism laves phase | 34 | 34 | 39 | 0.70 | 3/2 | 0/60 | 4.5/5.5 |
Feedstock Material | ABS [44,45] | VP [46] |
---|---|---|
Density (g/cm3) | 1.05 | 1.05–1.25 |
Elastic modulus (MPa) | 2180–2230 | 1779–2385 |
Tensile strength (MPa) | 26–31 | 30–52 |
Feedstock Material | ABS | VP Resin |
---|---|---|
Density (g/cm3) | 0.98–1.01 | 1.19–1.20 |
Elastic modulus (MPa) | 1230–1512 | 1118–1376 |
Compressive yield stress (MPa) | 36.9–44.4 | 25.9–27.3 |
Unit Cell Type | Density (g/cm3) | |||
---|---|---|---|---|
Material Extrusion | Vat Photopolymerization | |||
Mean | SD | Mean | SD | |
CVC | 0.1030 | 7.07 × 10−4 | 0.1416 | 3.37 × 10−3 |
CD | 0.0971 | 7.07 × 10−5 | 0.1495 | 1.25 × 10−3 |
CF | 0.1805 | 4.31 × 10−3 | 0.2750 | 4.50 × 10−2 |
TV | 0.1013 | 3.54 × 10−4 | 0.1364 | 5.15 × 10−3 |
HPV | 0.0612 | 2.12 × 10−4 | 0.0845 | 1.16 × 10−2 |
TOV | 0.1442 | 4.24 × 10−4 | 0.2196 | 1.63 × 10−4 |
HPD | 0.0569 | 3.54 × 10−3 | 0.0924 | 3.65 × 10−4 |
HPL | 0.0828 | 7.07 × 10−5 | 0.1483 | 1.09 × 10−2 |
Elastic Modulus (MPa) | ||||
---|---|---|---|---|
Material Extrusion | Vat Photopolymerization | |||
Mean | SD | Mean | SD | |
CVC | 1.07 | 2.67 × 10−1 | 0.60 | 8.05 × 10−2 |
CD | 2.80 | 2.26 × 10−2 | 1.44 | 1.71 × 10−1 |
CF | 9.36 | 1.67 × 10 0 | 6.02 | 2.43 × 10 0 |
TV | 1.69 | 1.34 × 10−1 | 0.70 | 2.23 × 10−1 |
HPV | 0.30 | 3.46 × 10−3 | 0.15 | 6.36 × 10−4 |
TOV | 12.55 | 1.46 × 10 0 | 3.94 | 2.02 × 10 0 |
HPD | 0.93 | 2.79 × 10−2 | 0.44 | 1.49 × 10−1 |
HPL | 3.44 | 8.34 × 10−1 | 3.72 | 1.27 × 10−2 |
Energy Capacity (MJ/m3) | ||||
---|---|---|---|---|
Material Extrusion | Vat Photopolymerization | |||
Mean | SD | Mean | SD | |
CVC | 0.0738 | 7.33 × 10−3 | 0.0377 | 6.20 × 10−3 |
CD | 0.0908 | 3.81 × 10−3 | 0.0889 | 9.91 × 10−3 |
CF | 0.3521 | 5.92 × 10−3 | 0.4068 | 4.38 × 10−2 |
TV | 0.0865 | 1.96 × 10−3 | 0.0460 | 1.55 × 10−2 |
HPV | 0.0182 | 1.36 × 10−3 | 0.0099 | 0.00 × 10 0 |
TOV | 0.3790 | 2.93 × 10−2 | 0.2455 | 1.29 × 10−1 |
HPD | 0.0313 | 2.69 × 10−3 | 0.0318 | 1.12 × 10−2 |
HPL | 0.1377 | 1.12 × 10−2 | 0.1853 | 0.00 × 10 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra Silva, R.; Torres, M.J.; Zahr Viñuela, J. A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing. Polymers 2021, 13, 2163. https://doi.org/10.3390/polym13132163
Guerra Silva R, Torres MJ, Zahr Viñuela J. A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing. Polymers. 2021; 13(13):2163. https://doi.org/10.3390/polym13132163
Chicago/Turabian StyleGuerra Silva, Rafael, María Josefina Torres, and Jorge Zahr Viñuela. 2021. "A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing" Polymers 13, no. 13: 2163. https://doi.org/10.3390/polym13132163
APA StyleGuerra Silva, R., Torres, M. J., & Zahr Viñuela, J. (2021). A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing. Polymers, 13(13), 2163. https://doi.org/10.3390/polym13132163