# Experimental, Computational, and Dimensional Analysis of the Mechanical Performance of Fused Filament Fabrication Parts

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Material Characterization

## 3. Experimental Procedure

#### 3.1. Uniaxial Tensile Tests

- Young’s modulus in the printing direction ${E}_{\perp}$ was obtained from the V-Cover specimen;
- Young’s modulus in the plane of isotropy ${E}_{iso}$ was obtained from the H-Cover specimen;
- The shear modulus in the printing direction G was obtained from the 45-Cover specimen with:$$G=\frac{{E}_{1}}{2(1+{\nu}_{12})}$$
- The shear modulus in the plane of isotropy ${G}_{iso}$ was obtained with:$${G}_{iso}=\frac{{E}_{iso}}{2(1+{\nu}_{iso})}$$

- Young’s modulus in the direction parallel to the filament ${E}_{\Vert}$ was obtained from the H-Contour specimen;
- Young’s modulus in the plane of isotropy ${E}_{iso}$ was obtained from the V-Contour specimen;
- The shear modulus in the direction parallel to the filament G was obtained from the 45-Contour specimen with Equation (2);
- The shear modulus in the plane of isotropy ${G}_{iso}$ was obtained from Equation (3).

#### 3.2. Bending Tests

^{2}. All samples for the bending tests were printed with contours and covers with a thickness equal to 1 mm, and the in-fill structure was conformed by a ±45° linear pattern.

## 4. Computational Characterization

#### 4.1. Representative Volume Element

#### 4.2. Multiscale Computational Homogenization

Algorithm 1: First-order computational homogenization. |

## 5. Experimental and Computational Results

#### 5.1. Tensile Tests

#### 5.2. Homogenization

#### 5.3. Experimental Validation

## 6. Dimensional Analysis on the Three-Zone Model

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

AM | Additive Manufacturing |

MJF | Multi-Jet Fusion |

SLM | Selective Laser Melting |

EBM | Electron Beam Melting |

FFF | Fused Filament Fabrication |

FDM | Fused Deposition Modeling |

PLA | Polylactic Acid |

ABS/GP | General Purpose Acrylonitrile Butadiene Styrene |

ABS/PC | Polycarbonate Acrylonitrile Butadiene Styrene |

RVE | Representative Volume Element |

FOCH | First-Order Computational Homogenization |

BC | Boundary Condition |

ML | Machine Learning |

## References

- Meißner, P.; Watschke, H.; Winter, J.; Vietor, T. Artificial Neural Networks-Based Material Parameter Identification for Numerical Simulations of Additively Manufactured Parts by Material Extrusion. Polymers
**2020**, 12, 2949. [Google Scholar] [CrossRef] [PubMed] - Jiang, J.; Xiong, Y.; Zhang, Z.; Rosen, D. Machine learning integrated design for additive manufacturing. J. Intell. Manuf.
**2020**. [Google Scholar] [CrossRef] - Nath, S.D.; Nilufar, S. An Overview of Additive Manufacturing of Polymers and Associated Composites. Polymers
**2020**, 12, 2719. [Google Scholar] [CrossRef] [PubMed] - Sillani, F.; Kleijnen, R.; Vetterli, M.; Schmid, M.; Wegener, K. Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance. Addit. Manuf.
**2019**, 27, 32–41. [Google Scholar] [CrossRef] - Frazier, W. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform.
**2014**, 23, 1917–1928. [Google Scholar] [CrossRef] - Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol.
**2012**, 28, 1–14. [Google Scholar] [CrossRef] - Peterson, A. Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective. Addit. Manuf.
**2019**, 27, 363–371. [Google Scholar] [CrossRef] - Rajpurohit, S.; Dave, H. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int. J. Adv. Manuf. Technol.
**2019**, 101, 1525–1536. [Google Scholar] [CrossRef] - Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol.
**2016**, 83, 389–405. [Google Scholar] [CrossRef][Green Version] - Kuo, C.; Chen, C.; Chang, S. Polishing mechanism for ABS parts fabricated by additive manufacturing. Int. J. Adv. Manuf. Technol.
**2017**, 91, 1473–1479. [Google Scholar] [CrossRef] - Morand, L.; Helm, D. A mixture of experts approach to handle ambiguities in parameter identification problems in material modeling. Comput. Mater. Sci.
**2019**, 167, 85–91. [Google Scholar] [CrossRef] - Mohamed, O.; Masood, S.; Bhowmik, J. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf.
**2015**, 3, 42–53. [Google Scholar] [CrossRef] - Li, L.; McGuan, R.; Isaac, R.; Kavehpour, P.; Candler, R. Improving precision of material extrusion 3D printing by in-situ monitoring & predicting 3D geometric deviation using conditional adversarial networks. Addit. Manuf.
**2021**, 38, 101695. [Google Scholar] [CrossRef] - Teraiya, S.; Vyavahare, S.; Kumar, S. Experimental Investigation on Influence of Process Parameters on Mechanical Properties of PETG Parts Made by Fused Deposition Modeling. In Advances in Manufacturing Processes; Dave, H.K., Nedelcu, D., Eds.; Springer: Singapore, 2021; pp. 283–293. [Google Scholar] [CrossRef]
- Chandravadia, M.; Chudasama, M. Experimental Investigation on Tensile Properties of Nylon Glass Fibre Material Made Using Fused Deposition Modeling Process. In Advances in Manufacturing Processes; Dave, H., Nedelcu, D., Eds.; Springer: Singapore, 2021; pp. 329–342. [Google Scholar] [CrossRef]
- Gebisa, A.; Lemu, H. Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment. Materials
**2018**, 11, 500. [Google Scholar] [CrossRef][Green Version] - Arif, M.; Kumar, S.; Varadarajan, K.; Cantwell, W. Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater. Des.
**2018**, 146, 249–259. [Google Scholar] [CrossRef] - Cantrell, J.T.; Rohde, S.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Jerez, A.; Steinbach, D.; Kroese, C.; et al. Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts. In Advancement of Optical Methods in Experimental Mechanics; Yoshida, S., Lamberti, L., Sciammarella, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 3, pp. 89–105. [Google Scholar] [CrossRef]
- Chockalingam, K.; Jawahar, N.; Praveen, J. Enhancement of Anisotropic Strength of Fused Deposited ABS Parts by Genetic Algorithm. Mater. Manuf. Process.
**2016**, 31, 2001–2010. [Google Scholar] [CrossRef] - Carneiro, O.; Silva, A.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des.
**2015**, 83, 768–776. [Google Scholar] [CrossRef] - Croccolo, D.; De Agostinis, M.; Olmi, G. Experimental characterization and analytical modelling of the mechanical behavior of fused deposition processed parts made of ABS-M30. Comput. Mater. Sci.
**2013**, 79, 506–518. [Google Scholar] [CrossRef] - Sood, A.; Ohdar, R.; Mahapatra, S. Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res.
**2012**, 3, 81–90. [Google Scholar] [CrossRef][Green Version] - Liu, C.; Chen, Y.; Yang, S. Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages. Mater. Today Commun.
**2021**, 26, 101895. [Google Scholar] [CrossRef] - Forés-Garriga, A.; Pérez, M.; Gómez-Gras, G.; Reyes-Pozo, G. Role of infill parameters on the mechanical performance and weight reduction of PEI Ultem processed by FFF. Mater. Des.
**2020**, 193, 108810. [Google Scholar] [CrossRef] - Srinivasan, R.; Pridhar, T.; Ramprasath, L.; Charan, N.S.; Ruban, W. Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Mater. Today Proc.
**2020**, 27, 1827–1832. [Google Scholar] [CrossRef] - Zhou, Y.G.; Zou, J.R.; Wu, H.H.; Xu, B.P. Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile-butadiene-styrene composites. Polym. Compos.
**2020**, 41, 60–72. [Google Scholar] [CrossRef] - Coogan, T.; Kazmer, D. Modeling of interlayer contact and contact pressure during fused filament fabrication. J. Rheol.
**2019**, 63, 655–672. [Google Scholar] [CrossRef] - Gilmer, E.L.; Miller, D.; Chatham, C.A.; Zawaski, C.; Fallon, J.J.; Pekkanen, A.; Long, T.E.; Williams, C.B.; Bortner, M.J. Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening. Polymer
**2018**, 152, 51–61. [Google Scholar] [CrossRef] - Phan, D.D.; Swain, Z.R.; Mackay, M.E. Rheological and heat transfer effects in fused filament fabrication. J. Rheol.
**2018**, 62, 1097–1107. [Google Scholar] [CrossRef] - McIlroy, C.; Olmsted, P.D. Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J. Rheol.
**2017**, 61, 379–397. [Google Scholar] [CrossRef][Green Version] - Mackay, M.E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol.
**2018**, 62, 1549–1561. [Google Scholar] [CrossRef] - Dialami, N.; Chiumenti, M.; Cervera, M.; Rossi, R.; Chasco, U.; Domingo, M. Numerical and experimental analysis of the structural performance of AM components built by Fused Filament Fabrication. Int. J. Mech. Mater. Des.
**2020**. [Google Scholar] [CrossRef] - Dialami, N.; Chiumenti, M.; Cervera, M.; Chasco, U.; Reyes-Pozo, G.; Pérez, M.A. Printing pattern based material characterization and enhanced performance analysis of FFF components: Experimental and computational validation. Comput. Struct.
**2021**. submitted. [Google Scholar] - Çengel, Y.; Cimbala, J. Mecánica de Fluidos. In Fundamentos y Aplicaciones; McGraw-Hill Interamericana: Mexico City, Mexico, 2006. [Google Scholar]
- Yang, F.; Pitchumani, R. Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules
**2002**, 35, 3213–3224. [Google Scholar] [CrossRef] - Bartolai, J.; Simpson, T.W.; Xie, R. Predicting strength of additively manufactured thermoplastic polymer parts produced using material extrusion. Rapid Prototyp. J.
**2018**, 24, 321–332. [Google Scholar] [CrossRef] - Ma, Q.; Zhao, W.; Li, X.; Li, L.; Wang, Z. Study of an environment-friendly surface pretreatment of ABS-polycarbonate surface for adhesion improvement. Int. J. Adhes. Adhes.
**2013**, 44, 243–249. [Google Scholar] [CrossRef] - ELIX Polimers. ELIX PC/ABS 5130 Technical Information. 2020. Available online: https://www.elix-polymers.com/uploads/ELIX%20Polymers%20-%20ELIX%20PC-ABS%205130%20-%20ASTM%20 (accessed on 12 February 2021).
- Bierögel, C.; Grellmann, W. Quasi-Static Tensile Test—Poisson Ratio of Thermoplastic Materials—Data; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Ashby, M.F.; Jones, D. Engineering Materials 2: An Introduction to Microstructures, Processing, and Design; Pergamon Press: Oxford, UK, 1986. [Google Scholar]
- Casavola, C.; Cazzato, A.; Moramarco, V.; Pappalettere, C. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des.
**2016**, 90, 453–458. [Google Scholar] [CrossRef] - ASTM Standards. Standard Test Method for Tensile Properties of Plastics; American Society for Testing and Materials: Conshohocken, PA, USA, 1958. [Google Scholar]
- American Society for Testing and Materials. ASTM D790-07. In Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; American Society for Testing and Materials: Conshohocken, PA, USA, 2007. [Google Scholar]
- Zhang, Y.; Li, F.; Jia, D. Lattice impeller design and multi-scale stress-deformation analysis based on conventional cubic lattice. Mech. Adv. Mater. Struct.
**2020**, 1–17. [Google Scholar] [CrossRef] - Hassani, B.; Hinton, E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct.
**1998**, 69, 707–717. [Google Scholar] [CrossRef] - Feyel, F.; Chaboche, J. FE2 multiscale approach for modelling the elastoviscoplastic behavior of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng.
**2000**, 183, 309–330. [Google Scholar] [CrossRef] - Feyel, F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng.
**2003**, 192, 3233–3244. [Google Scholar] [CrossRef] - McDowell, D. A perspective on trends in multiscale plasticity. Int. J. Plast.
**2010**, 26, 1280–1309. [Google Scholar] [CrossRef] - Nguyen, V.P.; Stroeven, M.; Sluys, L. Multiscale continuous and discontinuous modeling of heterogeneous materials: A review on recent developments. J. Multiscale Model.
**2011**, 3, 229–270. [Google Scholar] [CrossRef] - Efendiev, Y.; Galvis, J.; Hou, T. Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys.
**2013**, 251, 116–135. [Google Scholar] [CrossRef][Green Version] - Lloberas-Valls, O.; Raschi, M.; Huespe, A.; Oliver, J. Reduced finite element square techniques (rfe 2): Towards industrial multiscale fe software. In Proceedings of the XV International Conference on Computational Plasticity, Fundamentals and Applications, COMPLAS 2019, Barcelona, Spain, 3–5 September 2019. [Google Scholar]
- Caicedo, M.; Mroginski, J.; Toro, S.; Raschi, M.; Huespe, A.; Oliver, J. High Performance Reduced Order Modeling Techniques Based on Optimal Energy Quadrature: Application to Geometrically Non-linear Multiscale Inelastic Material Modeling. Arch. Comput. Methods Eng.
**2019**, 26, 771–792. [Google Scholar] [CrossRef] - Raschi, M.; Lloberas-Valls, O.; Huespe, A.; Oliver, J. High performance reduction technique for multiscale finite element modeling (HPR-FE2): Towards industrial multiscale FE software. Comput. Methods Appl. Mech. Eng.
**2021**, 375, 113580. [Google Scholar] [CrossRef] - Dadvand, P.; Rossi, R.; Oñate, E. An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications. Arch. Comput. Methods Eng.
**2010**, 17, 253–297. [Google Scholar] [CrossRef] - Cervera, M.; Agelet de Saracibar, C. COMET: Coupled Mechanical and Thermal Analysis, Data Input Manual, Version 5.0, Technical Report IT-308. 2002. Available online: http://www.cimne.upc.es (accessed on 25 February 2021).
- Wu, W.; Ye, W.; Geng, P.; Wang, Y.; Li, G.; Hu, X.; Zhao, J. 3D printing of thermoplastic PI and interlayer bonding evaluation. Mater. Lett.
**2018**, 229, 206–209. [Google Scholar] [CrossRef] - Lepoivre, A.; Boyard, N.; Levy, A.; Sobotka, V. Heat transfer and adhesion study for the FFF additive manufacturing process. Procedia Manuf.
**2020**, 47, 948–955. [Google Scholar] [CrossRef] - Coogan, T.; Kazmer, D. Prediction of interlayer strength in material extrusion additive manufacturing. Addit. Manuf.
**2020**, 35. [Google Scholar] [CrossRef] - Baturynska, I.; Semeniuta, O.; Martinsen, K. Optimization of Process Parameters for Powder Bed Fusion Additive Manufacturing by Combination of Machine Learning and Finite Element Method: A Conceptual Framework. Procedia CIRP
**2018**, 67, 227–232. [Google Scholar] [CrossRef] - Wang, C.; Tan, X.; Tor, S.; Lim, C. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit. Manuf.
**2020**, 36. [Google Scholar] [CrossRef]

**Figure 10.**Non-dimensional relationships for PLA, ABS/GP, and ABS/PC referred to raw material properties. (

**a**) Cover zone. (

**b**) Contour zone.

**Figure 11.**Non-dimensional relationships for PLA, ABS/GP, and ABS/PC referred to ${E}_{\Vert}$. (

**a**) Cover zone. (

**b**) Contour zone.

**Figure 12.**Non-dimensional relationships for the inner zone from all tested materials: Young’s modulus in direction X (

**a**), Young’s modulus in direction Z (

**b**), shear modulus in the XY plane (

**c**), shear modulus in the YZ plane (

**d**).

${\mathit{E}}_{\mathit{x}}$ | ${\mathit{E}}_{\mathit{y}}$ | ${\mathit{E}}_{\mathit{z}}$ | ${\mathit{\nu}}_{\mathbf{xy}}$ | ${\mathit{\nu}}_{\mathbf{yz}}$ | ${\mathit{\nu}}_{\mathbf{zx}}$ | ${\mathit{G}}_{\mathbf{xy}}$ | ${\mathit{G}}_{\mathbf{yz}}$ | ${\mathit{G}}_{\mathbf{zx}}$ | |
---|---|---|---|---|---|---|---|---|---|

Cover | ${E}_{iso}$ | ${E}_{iso}$ | ${E}_{\perp}$ | ${\nu}_{iso}$ | $\nu $ | $\nu $ | ${G}_{iso}$ | G | G |

Contour | ${E}_{\Vert}$ | ${E}_{iso}$ | ${E}_{iso}$ | $\nu $ | ${\nu}_{iso}$ | $\nu $ | G | ${G}_{iso}$ | G |

Printing Parameter | Value |
---|---|

Extrusion temperature (°C) | 250 |

Base temperature (°C) | 95 |

Layer thickness (mm) | 0.15 |

First layer printing speed (mm/s) | 15 |

Contour printing speed (mm/s) | 18 |

Cover printing speed (mm/s) | 20 |

Inner printing speed (mm/s) | 25 |

Material Properties | Cover | Contour |
---|---|---|

${E}_{\Vert}$ (GPa) ${E}_{\perp}$ (GPa) | 1.53 ± 0.09 | 1.86 ± 0.04 |

${E}_{iso}$ (GPa) | 1.51 ± 0.5 | 1.51 ± 0.03 |

${\nu}_{iso}$ | 0.36 ± 0.01 | 0.36 ± 0.01 |

$\nu $ | 0.36 ± 0.01 | 0.36 ± 0.01 |

G (GPa) | 0.232 ± 0.02 | 0.559 ± 0.02 |

${G}_{iso}$ (GPa) | 0.555 ± 0.2 | 0.555 ± 0.01 |

In-Fill (%) | 10 | 20 | 50 |
---|---|---|---|

${E}_{x}$ (MPa) | 0.61 | 5.47 | 129.99 |

${E}_{y}$ (MPa) | 0.61 | 5.47 | 130.02 |

${E}_{z}$ (MPa) | 186.00 | 372.00 | 930.00 |

${\nu}_{xy}$ | 0.99 | 0.9739 | 0.8022 |

${\nu}_{yz}$ | 0.3528 | 0.3530 | 0.3530 |

${\nu}_{xz}$ | 0.3532 | 0.3530 | 0.3530 |

${G}_{xy}$ (MPa) | 53.33 | 106.98 | 274.11 |

${G}_{yz}$ (MPa) | 35.84 | 74.83 | 219.43 |

${G}_{xz}$ (MPa) | 35.84 | 74.83 | 219.43 |

**Table 5.**Comparison between experimental and simulation results for the square cross-section bending test (ABS/PC material).

In-Fill Density (%) | Printing Orientation | ${\mathit{K}}_{\mathbf{experimental}}$ $(\mathit{N}/\mathbf{mm})$ | ${\mathit{K}}_{\mathbf{simulation}}$ $(\mathit{N}/\mathbf{mm})$ | Relative Difference (%) |
---|---|---|---|---|

10 | H | 174.33 | 161.18 | 7.54 |

V | 139.10 | 135.77 | 2.39 | |

20 | H | 179.26 | 177.13 | 1.19 |

V | 139.61 | 150.49 | 7.79 | |

50 | H | 223.25 | 220.67 | 1.16 |

V | 186.38 | 182.46 | 2.10 |

ASTM | Orientation | Pattern | Nomenclature | Characterized Property |
---|---|---|---|---|

ASTM D638 | Horizontal | Crossed (cover) | H-Cover | ${E}_{iso}^{cover}$, ${G}_{iso}^{cover}$ |

Aligned (contour) | H-Contour | ${E}_{\Vert}$ | ||

Vertical | Crossed (cover) | V-Cover | ${E}_{\perp}$ | |

Aligned (contour) | V-Contour | ${E}_{iso}^{contour}$, ${G}_{iso}^{contour}$ | ||

45° | Crossed (cover) | 45-Cover | ${G}^{cover}$ | |

Aligned (contour) | 45-Contour | ${G}^{contour}$ | ||

ASTM D790 | Horizontal | In-fill 10% | H-10 | |

In-fill 20% | H-20 | |||

In-fill 50% | H-50 | |||

Vertical | In-fill 10% | V-10 | ||

In-fill 20% | V-20 | |||

In-fill 50% | V-50 |

Property | Value |
---|---|

${E}_{iso}^{cover}/{E}_{\Vert}$ | 0.80 |

${G}_{iso}^{cover}/{E}_{\Vert}$ | 0.30 |

${E}_{\Vert}/{E}_{raw}$ | 0.87 |

${E}_{iso}^{contour}/{E}_{\Vert}$ | 0.82 |

${G}^{contour}/{E}_{\Vert}$ | 0.31 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rivet, I.; Dialami, N.; Cervera, M.; Chiumenti, M.; Reyes, G.; Pérez, M.A. Experimental, Computational, and Dimensional Analysis of the Mechanical Performance of Fused Filament Fabrication Parts. *Polymers* **2021**, *13*, 1766.
https://doi.org/10.3390/polym13111766

**AMA Style**

Rivet I, Dialami N, Cervera M, Chiumenti M, Reyes G, Pérez MA. Experimental, Computational, and Dimensional Analysis of the Mechanical Performance of Fused Filament Fabrication Parts. *Polymers*. 2021; 13(11):1766.
https://doi.org/10.3390/polym13111766

**Chicago/Turabian Style**

Rivet, Iván, Narges Dialami, Miguel Cervera, Michele Chiumenti, Guillermo Reyes, and Marco A. Pérez. 2021. "Experimental, Computational, and Dimensional Analysis of the Mechanical Performance of Fused Filament Fabrication Parts" *Polymers* 13, no. 11: 1766.
https://doi.org/10.3390/polym13111766