Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications
Abstract
:1. Introduction
2. Non-Selective Ion-Sensitive Formulations
2.1. Gellan Gum
2.1.1. Nasal Formulation
2.1.2. Ocular Formulations
2.1.3. Other Applications
2.2. Alginates
2.2.1. Ocular Formulations
2.2.2. Other Applications
2.3. Other Carriers
2.4. Selective Ion-Sensitive Systems
2.5. MOFs
2.6. Liposomes
2.7. Other Carriers
3. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- James, H.P.; John, R.; Alex, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharm. Sin. B 2014, 4, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotze, M.J.; van Velden, D.P.; van Rensburg, S.J.; Erasmus, R. Pathogenic mechanisms underlying iron deficiency and iron overload: New insights for clinical application. eJIFCC 2009, 20, 108–123. [Google Scholar] [PubMed]
- Portbury, S.D.; Adlard, P.A. Zinc signal in brain diseases. Int. J. Mol. Sci. 2017, 18, 2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R.; Gamble, G.D.; Bolland, M.J. Circulating calcium concentrations, vascular disease and mortality: A systematic review. J. Intern. Med. 2016, 279, 524–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Khan, M.F.; Akram, N.; Akhter, N.; Noreen, A.; Zuber, M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int. J. Biol. Macromol. 2018, 109, 1068–1087. [Google Scholar] [CrossRef] [PubMed]
- Burke, W. The ionic composition of nasal fluid and its function. Health (Irvine. Calif.) 2014, 6, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Fijorek, K.; Püsküllüoğlu, M.; Tomaszewska, D.; Tomaszewski, R.; Glinka, A.; Polak, S. Serum potassium, sodium and calcium levels in healthy individuals—Literature review and data analysis. Folia Med. Cracov. 2014, 54, 53–70. [Google Scholar]
- Ruiz-Ederra, J.; Levin, M.H.; Verkman, A.S. In situ fluorescence measurement of tear film [Na+], [K+], [Cl−], and pH in mice shows marked hypertonicity in aquaporin-5 deficiency. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2132–2138. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.L.; Ren, X.W.; Zhang, Q.Z.; Chen, E.; Xu, F.; Chen, J.; Liu, L.C.; Jiang, X.G. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int. J. Pharm. 2009, 365, 109–115. [Google Scholar] [CrossRef]
- Belgamwar, V.S.; Chauk, D.S.; Mahajan, H.S.; Jain, S.A.; Gattani, S.G.; Surana, S.J. Formulation and evaluation of in situ gelling system of dimenhydrinate for nasal administration. Pharm. Dev. Technol. 2009, 14, 240–248. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Zhang, L.; Yang, C.; Zhai, G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J. Drug Target. 2012, 20, 831–840. [Google Scholar] [CrossRef]
- Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, L.; Xie, H.; Wang, Y.; Gao, S.; Zhang, L.; Bo, F.; Yang, S.; Feng, A. Primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonol-solid lipid nanoparticles for intranasal drug delivery. Int. J. Nanomed. 2020, 15, 3137–3160. [Google Scholar] [CrossRef]
- Hao, J.; Zhao, J.; Zhang, S.; Tong, T.; Zhuang, Q.; Jin, K.; Chen, W.; Tang, H. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surfaces B Biointerfaces 2016, 147, 376–386. [Google Scholar] [CrossRef]
- Rajput, A.P.; Butani, S.B. Fabrication of an ion-sensitive in situ gel loaded with nanostructured lipid carrier for nose to brain delivery of donepezil. Asian J. Pharm. 2018, 12, 6–11. [Google Scholar]
- Sun, J.; Zhou, Z. A novel ocular delivery of brinzolamide based on gellan gum: In vitro and in vivo evaluation. Drug Des. Devel. Ther. 2018, 12, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.; Patel, G. Formulation, ex-vivo and preclinical in-vivo studies of combined ph and ion-sensitive ocular sustained in situ hydrogel of timolol maleate for the treatment of glaucoma. Biointerface Res. Appl. Chem. 2021, 11, 8242–8265. [Google Scholar]
- Yu, S.; Wang, Q.M.; Wang, X.; Liu, D.; Zhang, W.; Ye, T.; Yang, X.; Pan, W. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int. J. Pharm. 2015, 480, 128–136. [Google Scholar] [CrossRef]
- Sultana, Y.; Aqil, M.; Ali, A. ion-activated, gelrite®-based in situ ophthalmic gels of pefloxacin mesylate: Comparison with conventional eye drops. Drug Deliv. J. Deliv. Target. Ther. Agents 2006, 13, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, N.S.; Srinivasa, U. Design and evaluation of ion activated in situ ophthalmic gel of moxifloxacin hydrochloride and ketorolac tromethamine combination using carboxy methylated tamarind kernel powder. Saudi J. Med. Pharm. Sci. 2017, 3, 1–8. [Google Scholar]
- Janga, K.Y.; Tatke, A.; Balguri, S.P.; Lamichanne, S.P.; Ibrahim, M.M.; Maria, D.N.; Jablonski, M.M.; Majumdar, S. ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: In vitro permeability, cytotoxicity and in vivo evaluation. Artif. Cells Nanomedicine Biotechnol. 2018, 46, 1039–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terreni, E.; Zucchetti, E.; Tampucci, S.; Burgalassi, S.; Monti, D.; Chetoni, P. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (Odds) for cyclosporine-a. Pharmaceutics 2021, 13, 192. [Google Scholar] [CrossRef]
- Göttel, B.; de Souza e Silva, J.M.; Santos de Oliveira, C.; Syrowatka, F.; Fiorentzis, M.; Viestenz, A.; Viestenz, A.; Mäder, K. Electrospun nanofibers—A promising solid in-situ gelling alternative for ocular drug delivery. Eur. J. Pharm. Biopharm. 2020, 146, 125–132. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, Y.; Li, S.; Xing, L.; Du, S.; Yuan, G.; Li, J.; Zhou, T.; Xiong, D.; Tan, H.; et al. Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int. J. Biol. Macromol. 2020, 164, 2204–2214. [Google Scholar] [CrossRef]
- Ng, J.Y.; Zhu, X.; Mukherjee, D.; Zhang, C.; Hong, S.; Kumar, Y.; Gokhale, R.; Ee, P.L.R. Pristine gellan gum–collagen interpenetrating network hydrogels as mechanically enhanced anti-inflammatory biologic wound dressings for burn wound therapy. ACS Appl. Bio Mater. 2021, 4, 1470–1482. [Google Scholar] [CrossRef]
- Bellini, D.; Cencetti, C.; Meraner, J.; Stoppoloni, D.; D’Abusco, A.S.; Matricardi, P. An in situ gelling system for bone regeneration of osteochondral defects. Eur. Polym. J. 2015, 72, 642–650. [Google Scholar] [CrossRef]
- Harish, N.; Prabhu, P.; Charyulu, R.; Gulzar, M.; Subrahmanyam, E.V. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J. Pharm. Sci. 2009, 71, 421. [Google Scholar] [CrossRef] [Green Version]
- Abd Ellah, N.H.; Abouelmagd, S.A.; Abbas, A.M.; Shaaban, O.M.; Hassanein, K.M.A. Dual-responsive lidocaine in situ gel reduces pain of intrauterine device insertion. Int. J. Pharm. 2018, 538, 279–286. [Google Scholar] [CrossRef]
- Hecht, H.; Srebnik, S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, J.; Nie, S.; Liu, H.; Ding, P.; Pan, W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm. 2006, 315, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Pandya, T.P.; Modasiya, M.K.; Patel, V.M. Sustained ophthalmic delivery of ofloxacin hydrochloride from an ion-activated in situ gelling system. Der Pharm. Lett. 2011, 3, 404–410. [Google Scholar]
- Shelley, H.; Rodriguez-Galarza, R.M.; Duran, S.H.; Abarca, E.M.; Babu, R.J. In situ gel formulation for enhanced ocular delivery of nepafenac. J. Pharm. Sci. 2018, 107, 3089–3097. [Google Scholar] [CrossRef] [PubMed]
- Kubo, W.; Miyazaki, S.; Attwood, D. Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int. J. Pharm. 2003, 258, 55–64. [Google Scholar] [CrossRef]
- Hu, C.; Feng, H.; Zhu, C. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids Surfaces B Biointerfaces 2012, 95, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Winans, A.M.; Irvine, D.J. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 2009, 5, 969–982. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Wei, Y.; Li, C.; Mao, S. Inner layer-embedded contact lenses for ion-triggered controlled drug delivery. Mater. Sci. Eng. C 2018, 93, 36–48. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, J.; Bao, P.; Ding, Y.; Shen, Y.; Webster, T.J.; Xu, Y. Construction and in vivo/in vitro evaluation of a nanoporous ion-responsive targeted drug delivery system for recombinant human interferon α-2b delivery. Int. J. Nanomedicine 2019, 14, 5339–5353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Sun, B.; Li, X.; Yu, Y.; Tian, Y.; Xu, X.; Jin, Z. Synthesis of pH- and ionic strength-responsive microgels and their interactions with lysozyme. Int. J. Biol. Macromol. 2015, 79, 392–397. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, J.; Jin, X.; Wu, X. Influence of ionic strength on the ph-sensitive in vitro ibuprofen release from dextran-poly(acrylic acid) copolymer. Indian J. Pharm. Sci. 2018, 80, 298–306. [Google Scholar] [CrossRef]
- Bodmeier, R.; Guo, X.; Sarabia, R.E.; Skultety, P.F. The influence of buffer species and strength on diltiazem HCl release from beads coated with the aqueous cationic polymer dispersions, eudragit RS, RL 30D. Pharm. Res. 1996, 13, 52–56. [Google Scholar] [CrossRef]
- Dragan, E.S.; Cocarta, A.I. Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: Synthesis, characterization, and evaluation of controlled release of drugs. ACS Appl. Mater. Interfaces 2016, 8, 12018–12030. [Google Scholar] [CrossRef]
- Jarvinen, K.; Akerman, S.; Svarfvar, B.; Tarvainen, T.; Viinikka, P.; Paronen, P. Drug release from pH and ionic strength responsive poly(acrylic acid) grafted poly(vinylidenefluoride) membrane bags in vitro. Pharm. Res. 1998, 15, 802. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc. 2009, 131, 8376–8377. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y.W. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small 2015, 11, 3807–3813. [Google Scholar] [CrossRef]
- Du, X.; Fan, R.; Qiang, L.; Xing, K.; Ye, H.; Ran, X.; Song, Y.; Wang, P.; Yang, Y. Controlled Zn2+-triggered drug release by preferred coordination of open active sites within functionalization indium metal organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 28939–28948. [Google Scholar] [CrossRef]
- Wu, M.X.; Gao, J.; Wang, F.; Yang, J.; Song, N.; Jin, X.; Mi, P.; Tian, J.; Luo, J.; Liang, F.; et al. Multistimuli responsive core–shell nanoplatform constructed from Fe3O4@MOF equipped with pillar[6]arene nanovalves. Small 2018, 14, 1–6. [Google Scholar]
- Lou, J.; Best, M.D. Calcium-Responsive Liposomes: Toward ion-Mediated Targeted Drug Delivery, 1st ed.; Elsevier Inc.: Houston, TX, USA, 2020; Volume 640, ISBN 9780128211533. [Google Scholar]
- Yigit, M.V.; Mishra, A.; Tong, R.; Cheng, J.; Wong, G.C.L.; Lu, Y. Inorganic mercury detection and controlled release of chelating agents from ion-responsive liposomes. Chem. Biol. 2009, 16, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Veremeeva, P.N.; Lapteva, V.L.; Palyulin, V.A.; Sybachin, A.V.; Yaroslavov, A.A.; Zefirov, N.S. Bispidinone-based molecular switches for construction of stimulus-sensitive liposomal containers. Tetrahedron 2014, 70, 1408–1411. [Google Scholar] [CrossRef]
- Tao, M.; Liu, J.; He, S.; Xu, K.; Zhong, W. In situ hydrogelation of forky peptides in prostate tissue for drug delivery. Soft Matter 2019, 15, 4200–4207. [Google Scholar] [CrossRef]
- Song, W.; Li, J.; Li, Q.; Ding, W.; Yang, X. Avidin-biotin capped mesoporous silica nanoparticles as an ion-responsive release system to determine lead(II). Anal. Biochem. 2015, 471, 17–22. [Google Scholar] [CrossRef]
- Deu, E.; Chen, I.T.; Lauterwasser, E.M.W.; Valderramos, J.; Li, H.; Edgington, L.E.; Renslo, A.R.; Bogyo, M. Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents in vivo. Proc. Natl. Acad. Sci. USA 2013, 110, 18244–18249. [Google Scholar] [CrossRef] [Green Version]
- Peng, P.; Wang, Q.; Du, Y.; Wang, H.; Shi, L.; Li, T. Extracellular ion-responsive logic sensors utilizing DNA dimeric nanoassemblies on cell surface and application to boosting AS1411 internalization. Anal. Chem. 2020, 92, 9273–9280. [Google Scholar] [CrossRef]
- Moirangthem, M.; Arts, R.; Merkx, M.; Schenning, A.P.H.J. An optical sensor based on a photonic polymer film to detect calcium in serum. Adv. Funct. Mater. 2016, 26, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Heller, D.H.; Jeng, E.S.; Yeung, T.-K.; Martinez, B.M.; Moll, A.E.; Gastala, J.B.; Strano, M.S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, 508–511. [Google Scholar] [CrossRef]
- Castile, J.; Cheng, Y.H.; Simmons, B.; Perelman, M.; Smith, A.; Watts, P. Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip. Drug Dev. Ind. Pharm. 2013, 39, 816–824. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. A metal-ion-responsive adhesive material via switching of molecular recognition properties. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Y.; Wang, D.; Li, X.; Chen, Z.; Wang, C.; Qin, H.; Liu, J.; Chang, B.; Qing, G. Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG Asia Mater. 2019, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Cabral, H.; Matsumoto, Y.; Wu, S.; Kano, M.R.; Yamori, T.; Nishiyama, N.; Kataoka, K. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med. 2011, 3, 64ra2. [Google Scholar] [CrossRef]
- Li, J.; Kataoka, K. Chemo-physical Strategies to Advance the in vivo functionality of targeted nanomedicine: The next generation. J. Am. Chem. Soc. 2021, 143, 538–559. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.L.; Eisner, D.A. Calcium buffering in the heart in health and disease. Circulation 2019, 139, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Litan, A.; Langhans, S.A. Cancer as a channelopathy: Ion channels and pumps in tumor development and progression. Front. Cell. Neurosci. 2015, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bagur, R.; Hajnóczky, G. Intracellular Ca2+ sensing: Role in calcium homeostasis and signaling. Mol. Cell 2017, 66, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bafaro, E.; Liu, Y.; Xu, Y.; Dempski, R.E. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct. Target. Ther. 2017, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
Ion-Sensitive Component | Incorporated Substance | Application | Ion-Induced Response | Ref. |
---|---|---|---|---|
Gellan gum | Momentasone | Allergic rhinitis | Prolonged residence in nasal cavity | [11] |
Dimenhydrate | Motion sickness | Alternative administration route | [12] | |
Curcumin | n/a | Nose-to-brain delivery | [13] | |
Paeonol | Neuroprotection | Nose-to-brain delivery | [15] | |
Resveratrol | Neurodegenerative diseases | Enhanced pharmacokinetic profile | [16] | |
Donepezil | Alzheimer’s disease | Alternative route of administration | [17] | |
Brinzolamide | Glaucoma | Enhanced pharmacokinetic profile | [18] | |
Gellan gum | Momentasone | Glaucoma | Drug release control | [19] |
Dimenhydrate | Glaucoma | Prolonged residence time | [20] | |
Curcumin | Bacterial infection | Enhanced antibacterial activity | [21] | |
Paeonol | Bacterial infection | Enhanced pharmacokinetic profile | [22] | |
Resveratrol | Fungal infection | Permeability and residence time enhance | [23] | |
Cyclosporine-A | Dry eye disease, choroid inflammation | Enhanced solubility and residence time | [24] | |
Tetracycline, Silver sulfadiazine | Wound dressing | Sustained drug release | [25] | |
Collagen | Wound dressing | Wound regeneration improvement | [26] | |
Hyaluronic acid | Bone and cartilage regeneration | Increase in proliferation of osteoblasts | [28] | |
Clotrimazole | Dental fungal infection | Prolonged residence on mucous membrane | [29] | |
Lidocaine | Local analgesia | Pain alleviation during medical intervention | [30] | |
Alginates | Gatifloxacin | Bacterial infection | Sustained drug release | [32] |
Ofloxacin | Bacterial infection | Sustained drug release | [33] | |
Nepafenac | Anti-inflammatory | Enhanced permeability | [34] | |
Paracetamol | Pain and fever therapy | Prolonged release | [35] | |
Rifampicin | Tuberculosis infection | Delayed release | [36] | |
IL-2 | Immunomodulation | Formation of matrix for cell colonization | [37] | |
Poly (styrene-divinyl benzene) sulfonic acid | Betaxolol | Glaucoma or ocular hypertension treatment | Ion-dependent release | [38] |
Carboxymethyl chitosan | Interferon α-2b | Antitumor | Sustained release and lung accumulation | [39] |
Carboxymethyl cellulose | Lysozyme | n/a | Gel swelling and protein uptake | [40] |
Dextran-poly (acrylic acid) copolymer | Ibuprofen | n/a | Controlled drug release and gel swelling | [41] |
Eudragit RS/LS | Diltiazem | n/a | Controlled drug release | [42] |
Methacrylate | n/a | n/a | Gel swelling, water uptake | [43] |
Acrylic acid grafted polyvinylidene fluoride | Propranolol, caffeine, sodium salicylate | n/a | Controlled drug release | [44] |
MOF | Procainamide | n/a | Controlled drug release | [45] |
Ion-Sensitive Component | Incorporated Substance | Application | Ion-Induced Response | Ref. |
---|---|---|---|---|
MOFs | 5-FU | Potential treatment of central nervous system diseases | Zn2+ dependent drug release | [46] |
5-FU | Potential treatment of central nervous system diseases | Zn2+ dependent drug release | [47] | |
5-FU | n/a | Zn2+ and Ca2+ dependent drug release | [48] | |
Modified liposomal carriers | Dye | n/a | Ca2+ dependent drug release | [49] |
Chelating agent, fluorescein | Hg2+ neutralization and detection | Hg2+ dependent release | [50] | |
Fluorescent dye | n/a | Cu2+ dependent release | [51] | |
D3F3 peptide | Doxorubicin | Possible prostate cancer treatment | Zn2+ dependent in situ hydrogel formation | [52] |
Mesoporous silica nanoparticles modified with Pb2+-activated DNAzyme | Fluorescein | Pb2+ detection | Pb2+ dependent release | [53] |
Prodrug 1,2,4-trioxolane moiety | ML4118S | Plasmodium infection treatment | Fe2+ dependent activation | [54] |
Polynucleotide framework | AS1411 aptamer | Cancer treatment | K+ and pH dependent release on cellular membrane | [55] |
Pectin | n/a | n/a | Ca2+ dependent gelling | [58] |
Polyacrylamide hydrogels | n/a | adhesive materials | Ion-dependent adhesion | [59] |
PNI-co-CF3-PT0.2-co-DDDEEKC0.2 | n/a | Biodevices and artificial nanochannels | Ca2+ concentration dependent channels | [60] |
Cholesteric liquid crystalline polymer | n/a | Fast calcium level test | Color change in presence of Ca2+ | [56] |
Single strain 30-nucleotide DNA absorbed on carbon nanotubes | n/a | Determination of Hg2+ concentration in biological systems | Hg2+ mediated shift in emission energy | [57] |
(1,2-diaminocyclohexane) platinum (II) | Platinum derivatives | Antitumor activity | Cl− induced intracellular activation of chemotherapeutic agent | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudko, M.; Urbaniak, T.; Musiał, W. Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications. Polymers 2021, 13, 1641. https://doi.org/10.3390/polym13101641
Rudko M, Urbaniak T, Musiał W. Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications. Polymers. 2021; 13(10):1641. https://doi.org/10.3390/polym13101641
Chicago/Turabian StyleRudko, Michał, Tomasz Urbaniak, and Witold Musiał. 2021. "Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications" Polymers 13, no. 10: 1641. https://doi.org/10.3390/polym13101641
APA StyleRudko, M., Urbaniak, T., & Musiał, W. (2021). Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications. Polymers, 13(10), 1641. https://doi.org/10.3390/polym13101641