Mussel-Inspired Approach to Constructing Dual Network Coated Layered Clay for Enhanced Barrier and Antibacterial Properties of Poly(vinyl alcohol) Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of NiAl-LDHs
2.3. Synthesis of LDHs@TA-Ti
2.4. Preparation of LDHs@TA-Ti/PVA Nanocomposites
2.5. Characterization
3. Results and Discussion
3.1. Chemical Structure of NiAl LDHs and LDHs@TA-Ti
3.2. Microstructure of NiAl LDHs and LDHs@TA-Ti
3.3. Antibacterial Properties of LDHs@TA-Ti and LDHs@TA-Ti/PVA Nanocomposites
3.4. Chemical Structure of LDHs@TA-Ti/PVA Nanocomposites
3.5. Thermal and Crystalline Properties of LDHs@TA-Ti/PVA Nanocomposites
3.6. Mechanical Properties and the Microstructure of LDHs@TA-Ti/PVA Nanocomposites
3.7. UV–Vis Barrier Properties and Transparency of LDHs@TA-Ti/PVA Nanocomposites
3.8. Gas Barrier Properties of LDHs@TA-Ti/PVA Nanocomposites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zeid, A.; Karabagias, I.K.; Nassif, M.; Kontominas, M.G. Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. J. Food Process. Pres. 2019, 43, e14102. [Google Scholar] [CrossRef]
- Chen, C.; Tang, Z.; Ma, Y.; Qiu, W.; Yang, F.; Mei, J.; Xie, J. Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Prog. Org. Coat. 2018, 123, 176–184. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, K.; Wang, Z.; Zhao, Q.; Yang, Y.; Zhang, Y.; Ai, S.; Xu, J. Biodegradable poly(vinyl alcohol)-based nanocomposite film reinforced with organophilic layered double hydroxides with potential packaging application. Iran. Polym. J. 2017, 26, 811–819. [Google Scholar] [CrossRef]
- Zhou, K.; Gui, Z.; Hu, Y. Facile synthesis of LDH nanoplates as reinforcing agents in PVA nanocomposites. Polym. Adv. Technol. 2017, 28, 386–392. [Google Scholar] [CrossRef]
- Gaaz, T.; Sulong, A.; Akhtar, M.; Kadhum, A.; Mohamad, A.; Al-Amiery, A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef] [Green Version]
- İşçi, Y.; İşçi, S. Comparison of the clay minerals type on the properties of reinforced-PVA nanocomposites. Polym. Compos. 2017, 38, 1698–1704. [Google Scholar] [CrossRef]
- Huang, J.; Limqueco, J.; Chieng, Y.Y.; Li, X.; Zhou, W. Performance evaluation of a novel food packaging material based on clay/polyvinyl alcohol nanocomposite. Innov. Food Sci. Emerg. 2017, 43, 216–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Zhang, S.; Zhang, Y.; Cheng, H. Gas barrier properties and mechanism of kaolin/styrene–butadiene rubber nanocomposites. Appl. Clay Sci. 2015, 111, 37–43. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Tammaro, L.; Costantino, U.; Bolognese, A.; Sammartino, G.; Marenzi, G.; Calignano, A.; Tetè, S.; Mastrangelo, F.; Califano, L.; Vittoria, V. Nanohybrids for controlled antibiotic release in topical applications. Int. J. Antimicrob. Agents 2007, 29, 417–423. [Google Scholar] [CrossRef]
- Pucciariello, R.; Tammaro, L.; Villani, V.; Vittoria, V. New nanohybrids of poly(ε-caprolactone) and a modified Mg/Al hydrotalcite: Mechanical and thermal properties. J. Polym. Sci. Pol. Phys. 2007, 45, 945–954. [Google Scholar] [CrossRef]
- Marangoni, R.; Gardolinski, J.E.F.D.; Mikowski, A.; Wypych, F. PVA nanocomposites reinforced with Zn2Al LDHs, intercalated with orange dyes. J. Solid State Electr. 2011, 15, 303–311. [Google Scholar] [CrossRef]
- Wang, C.; Han, H.; Jiang, W.; Ding, X.; Li, Q.; Wang, Y. Immobilization of Thermostable Lipase QLM on Core-Shell Structured Polydopamine-Coated Fe3O4 Nanoparticles. Catalysts 2017, 7, 49–60. [Google Scholar] [CrossRef]
- Nam, H.J.; Park, E.B.; Jung, D. Bioinspired polydopamine-layered double hydroxide nanocomposites: Controlled synthesis and multifunctional performance. RSC Adv. 2016, 6, 24952–24958. [Google Scholar] [CrossRef]
- Mao, L.; Wu, H.; Liu, Y.; Yao, J.; Bai, Y. Enhanced mechanical and gas barrier properties of poly(ε-caprolactone) nanocomposites filled with tannic acid-Fe(III) functionalized high aspect ratio layered double hydroxides. Mater. Chem. Phys. 2018, 211, 501–509. [Google Scholar] [CrossRef]
- Chen, C.; Xie, J.; Yang, F.; Zhang, H.; Xu, Z.; Liu, J.; Chen, Y. Development of moisture-absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel. J. Food Process. Pres. 2018, 42, e13374. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, D.; Yoon, H.; Choi, Y.; Yoon, J.; Lee, J. Polyphenol/FeIII complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Adv. Mater. Interfaces 2015, 2, 1500298–1500305. [Google Scholar] [CrossRef]
- Ramaraj, B.; Nayak, S.K.; Yoon, K.R. Poly(vinyl alcohol) and layered double hydroxide composites: Thermal and mechanical properties. J. Appl. Polym. Sci. 2010, 42, 8461–8467. [Google Scholar] [CrossRef]
- Mao, L.; Liu, Y.; Wu, H.; Chen, J.; Yao, J. Poly(ε-caprolactone) filled with polydopamine-coated high aspect ratio layered double hydroxide: Simultaneous enhancement of mechanical and barrier properties. Appl. Clay Sci. 2017, 150, 202–209. [Google Scholar] [CrossRef]
- Fan, L.; Ma, Y.; Su, Y.; Zhang, R.; Liu, Y.; Zhang, Q.; Jiang, Z. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Adv. 2015, 5, 107777–107784. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, W.; Yin, H.; Lian, H. Facile synthesis of FeIII–tannic acid film-functionalized magnetic silica microspheres for the enrichment of low-abundance peptides and proteins for MALDI-TOF MS analysis. RSC Adv. 2015, 5, 63896–63902. [Google Scholar] [CrossRef]
- Kim, S.; Kwak, S.; Lee, S.; Cho, W.K.; Lee, J.K.; Kang, S.M. One-step functionalization of zwitterionic poly[(3-(methacryloylamino)propyl)dimethyl(3-sulfopropyl)ammonium hydroxide] surfaces by metal–polyphenol coating. Chem. Commun. 2015, 51, 5340–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Xie, J.; Mao, L. One-pot assembly tannic acid-titanium dual network coating for low-pressure nanofiltration membranes. Sep. Purif. Technol. 2020, 233, 116051. [Google Scholar] [CrossRef]
- Zhao, X.; Jia, N.; Cheng, L.; Liu, L.; Gao, C. Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane. J. Membr. Sci. 2018, 560, 47–57. [Google Scholar] [CrossRef]
- Rahim, M.A.; Björnmalm, M.; Suma, T.; Faria, M.; Ju, Y.; Kempe, K.; Müllner, M.; Ejima, H.; Stickland, A.D.; Caruso, F. Metal-Phenolic Supramolecular Gelation. Angew. Chem. Int. Ed. 2016, 55, 13803–13807. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Im, S.; Kim, J.C.; Hong, W.G.; Shin, K.; Jeong, H.Y.; Hong, Y.J. Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability. ACS Sustain. Chem. Eng. 2017, 5, 6654–6664. [Google Scholar] [CrossRef]
- Mao, L.; Liu, J.Y.; Zheng, S.J.; Wu, H.Q.; Bai, Y.K. Mussel-inspired nano-silver loaded layered double hydroxides embedded into a biodegradable polymer matrix for enhanced mechanical and gas barrier properties. RSC Adv. 2019, 9, 5834–5843. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Xu, Z.; Ma, Y.; Liu, J.; Zhang, Q.; Tang, Z.; Fu, K.; Yang, F.; Xie, J. Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control 2018, 88, 105–112. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, D.; Dong, M.; Xu, T.; Jin, Y.; Xu, S.; Zhang, F.; Evans, D.G.; Jiang, X. Fabrication and Wettability of Colloidal Layered Double Hydroxide-Containing PVA Electrospun Nanofibrous Mats. Ind. Eng. Chem. Res. 2010, 49, 5610–5615. [Google Scholar] [CrossRef]
- He, Y.; Zhu, B.; Inoue, Y. Hydrogen bonds in polymer blends. Prog. Polym. Sci. 2004, 29, 1021–1051. [Google Scholar] [CrossRef]
- Ping, Z.H.; Nguyen, Q.T.; Chen, S.M.; Zhou, J.Q.; Ding, Y.D. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 2001, 42, 8461–8467. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Liu, Z.; Wang, Q. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement. Polymer 2019, 173, 103–109. [Google Scholar] [CrossRef]
- Liu, M.; Guo, B.; Du, M.; Jia, D. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl. Phys. A Mater. 2007, 88, 391–395. [Google Scholar] [CrossRef]
- Huang, S.; Cen, X.; Zhu, H.; Yang, Z.; Yang, Y.; Tjiu, W.W.; Liu, T. Facile preparation of poly(vinyl alcohol) nanocomposites with pristine layered double hydroxides. Mater. Chem. Phys. 2011, 130, 890–896. [Google Scholar] [CrossRef]
- Patwa, R.; Kumar, A.; Katiyar, V. Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly(lactic acid) based bionanocomposites. J. Appl. Polym. Sci. 2018, 135, 46671–46682. [Google Scholar] [CrossRef]
- Moyo, L.; Makhado, E.; Sinha Ray, S. Anomalous impact strength for layered double hydroxide-palmitate/poly(ε-caprolactone) nanocomposites. J. Appl. Polym. Sci. 2014, 131, 41109–41118. [Google Scholar] [CrossRef]
- Hajji, S.; Chaker, A.; Jridi, M.; Maalej, H.; Jellouli, K.; Boufi, S.; Nasri, M. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ. Sci. Pollut. Res. 2016, 23, 15310–15320. [Google Scholar] [CrossRef]
- Wu, J.; Sun, X.; Guo, X.; Ge, S.; Zhang, Q. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquac. Fish. 2017, 2, 185–192. [Google Scholar] [CrossRef]
Sample | PVA/g | LDHs@TA-Ti/g | LDHs@TA-Ti/wt % |
---|---|---|---|
PVA | 0.7 | 0 | 0 |
LATP-0.5% | 0.7 | 0.0035 | 0.5 |
LATP-1% | 0.7 | 0.0071 | 1 |
LATP-3% | 0.7 | 0.0216 | 3 |
LATP-5% | 0.7 | 0.0368 | 5 |
LATP-7% | 0.7 | 0.0527 | 7 |
Sample | Tg/oC | Tc/oC | Tm/oC | ΔHm/J·g−1 | χ/% |
---|---|---|---|---|---|
PLA | 74.8 | 193.3 | 220.0 | 49.44 | 30.33 |
LATP-0.5% | 74.9 | 193.8 | 220.3 | 44.76 | 27.60 |
LATP-1% | 74.9 | 195.5 | 221.7 | 42.77 | 26.50 |
LATP-3% | 75.3 | 195.7 | 221.5 | 41.15 | 26.03 |
LATP-5% | 75.3 | 196.1 | 222.4 | 40.53 | 26.17 |
LATP-7% | 76.3 | 195.2 | 222.9 | 38.08 | 25.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, L.; Xie, J.; Wu, H.; Liu, Y. Mussel-Inspired Approach to Constructing Dual Network Coated Layered Clay for Enhanced Barrier and Antibacterial Properties of Poly(vinyl alcohol) Nanocomposites. Polymers 2020, 12, 2093. https://doi.org/10.3390/polym12092093
Mao L, Xie J, Wu H, Liu Y. Mussel-Inspired Approach to Constructing Dual Network Coated Layered Clay for Enhanced Barrier and Antibacterial Properties of Poly(vinyl alcohol) Nanocomposites. Polymers. 2020; 12(9):2093. https://doi.org/10.3390/polym12092093
Chicago/Turabian StyleMao, Long, Jianda Xie, Huiqing Wu, and Yuejun Liu. 2020. "Mussel-Inspired Approach to Constructing Dual Network Coated Layered Clay for Enhanced Barrier and Antibacterial Properties of Poly(vinyl alcohol) Nanocomposites" Polymers 12, no. 9: 2093. https://doi.org/10.3390/polym12092093