The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of RL
2.2. Materials
2.3. Substrates for Finishing
2.4. The formulation of HALS-Containing RL
2.5. The Measurement of Coating Properties
2.6. The Measurement of Film Properties
3. Results and Discussion
3.1. Coating Properties of HALS-Containing RL
3.2. Lightfastness of HALS-Containing RL Films
3.3. FTIR Analysis of HALS-Containing RL Films
3.4. Film Properties of HALS-Containing RL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Watanabe, H.; Fujimoto, A.; Nishida, J.; Ohishi, T.; Takahara, A. Biobased Polymer Coating Using Catechol Derivative Urushiol. Langmuir 2016, 32, 4619–4623. [Google Scholar] [CrossRef]
- Honda, T.; Lu, R.; Sakai, R.; Ishimura, T.; Miyakoshi, T. Characterization and Comparison of Asian Lacquer Saps. Prog. Org. Coat. 2008, 61, 68–75. [Google Scholar] [CrossRef]
- Lu, R.; Harigaya, S.; Ishimura, T.; Nagase, K.; Miyakoshi, T. Development of A Fast-Drying Lacquer Based on Raw Lacquer Sap. Prog. Org. Coat. 2004, 51, 238–243. [Google Scholar] [CrossRef]
- Sakurai, T.; Takahashi, J. EPR Spectra of Type 3 Copper Centers in Rhus vernicifera Laccase and Cucumis Sativus Ascorbate Oxidase. Biochim. Biophys. Acta 1995, 1248, 143–148. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Ando, N.; Oyabu, H.; Uyama, H.; Kobayashi, S. Laccase-Catalyzed Curing of Natural Phenolic Lipids and Product Properties. J. Macromol. Sci. Part A 2007, 44, 1055–1060. [Google Scholar] [CrossRef]
- Wan, Y.Y.; Lu, R.; Akiyama, K.; Okamoto, K.; Honda, T.; Du, Y.M.; Kennedy, J.F. Effects of Lacquer Polysaccharides, Glycoproteins and Isoenzymes on the Activity of Free and Immobilised Laccase from Rhus vernicifera. Int. J. Biol. Macromol. 2010, 47, 6–81. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, J.Y.; Ma, Y.K.; Lee, Y.G.; Moon, J.H. Nonallergenic Urushiol Derivatives Inhibit the Oxidation of Unilamellar Vesicles and of Rat Plasma Induced by Various Radical Generators. Free Radic. Biol. Med. 2014, 71, 379–389. [Google Scholar] [CrossRef]
- Namiki, M. Antioxidants/Antimutagens in Food. Crit. Rev. Food Sci. Nutr. 1990, 29, 273–300. [Google Scholar] [CrossRef]
- Lu, R.; Hattori, K.; Xia, Z.; Yoshida, T.; Yang, J.; Zhang, L.; Du, Y.; Miyakoshi, T.; Uryu, T. Structural Analysis of Polysaccharides in Chinese Lacquer by NMR Spectroscopy. J. Text. Mach. Soc. Jpn. 1999, 55, 47–56. [Google Scholar] [CrossRef][Green Version]
- Niimura, N.; Miyakoshi, T. Structural Study of Oriental Lacquer Films During the Hardening Process. Talanta 2006, 70, 146–152. [Google Scholar] [CrossRef]
- Niimura, N.; Miyakoshi, T. Characterization of Synthesized Lacquer Analogue Films Using X-Ray Photoelectron Spectroscopy. Surf. Interface Anal. 2000, 29, 381–385. [Google Scholar] [CrossRef]
- Okahisa, Y.; Narita, C.; Yoshimura, T. Resistance of Wood Coated with Oriental Lacquer (Urushi) Against Damage Caused by Subterranean Termite. Wood Sci. 2019, 65, 41–49. [Google Scholar] [CrossRef]
- Hong, J.W.; Park, M.Y.; Kim, H.K.; Choi, J.O. UV-degradation Chemistry of Oriental Lacquer Coating Containing Hinder Amine Light Stabilizer. Bull. Korean Chem. Soc. 2000, 21, 61–64. [Google Scholar]
- Nakagoshi, K.; Yoshizumi, K. Degradation of Japanese Lacquer Under Wavelength Sensitivity of Light Radiation. Mater. Sci. Appl. 2011, 2, 1507–1515. [Google Scholar] [CrossRef]
- Coueignoux, C.; Rivers, S. Conservation of Photodegraded Asian Lacquer Surfaces: Four Case Studies. J. Am. Inst. Conserv. 2015, 54, 14–28. [Google Scholar] [CrossRef]
- Ogawa, T.; Inoue, A.; Osawa, S. Effect of Water on Viscoelastic Properties of Oriental Lacquer Film. J. Appl. Polym. Sci. 1998, 69, 315–321. [Google Scholar] [CrossRef]
- Obataya, E.; Furuta, Y.; Ohno, Y.; Norimoto, M.; Tomita, B. Effects of Aging and Moisture on the Dynamic Viscoelastic Properties of Oriental Lacquer (Urushi) Film. J. Appl. Polym. Sci. 2002, 83, 2288–2294. [Google Scholar] [CrossRef]
- Ma, R.Y.; Zhao, M.Y.; Mo, Y.F.; Tang, P.G.; Feng, Y.J.; Li, D.Q. HALS Intercalated Layered Double Hydroxides as An Efficient Light Stabilizer for Polypropylene. Appl. Clay Sci. 2019, 180, 9. [Google Scholar] [CrossRef]
- Gugumus, F. Current Trends in Mode of Action of Hindered Amine Light Stabilizers. Polym. Degrad. Stab. 1993, 40, 167–215. [Google Scholar] [CrossRef]
- Allen, N.S. Recent Advances in the Photo-Oxidation and Stabilization of Polymers. Chem. Soc. Rev. 1986, 15, 373–404. [Google Scholar] [CrossRef]
- Lee, J.J.; Chang, C.W.; Lu, K.T. Effect of Adding Amounts of HALS on the Lightfastness Improvement of Refined Oriental Lacquer. Forest Prod. Ind. 2018, 37, 193–203. [Google Scholar]
- Lu, R.; Honda, T.; Ishimura, T.; Miyakoshi, T. Study of A Naturally Drying Lacquer Hybridized with Organic Silane. Polym. J. 2005, 37, 309–315. [Google Scholar] [CrossRef]
- Step, E.N.; Turro, N.J.; Klemchuki, P.P.; Gandei, M.E. Model Studies on the Mechanism of HALS Stabilization. Die Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1995, 232, 65–83. [Google Scholar] [CrossRef]
- Yamashita, H.; Ohkatsu, Y. A New Antagonism Between Hindered Amine Light Stabilizers and Acidic Compounds Including Phenolic Antioxidant. Polym. Degrad. Stab. 2003, 80, 421–426. [Google Scholar] [CrossRef]
- Kumanotani, J. Urushi (Oriental Lacquer)—A Natural Aesthetic Durable and Future-Promising Coating. Prog. Org. Coat. 1995, 26, 163–195. [Google Scholar] [CrossRef]
- Kumanotani, J. Enzyme Catalyzed Durable and Authentic Oriental Lacquer: A Natural Microgelprintable Coating by Polysaccharide-Glycoprotein-Phenolic Lipid Complexes. Prog. Org. Coat. 1998, 34, 135–146. [Google Scholar] [CrossRef]
- Chang, C.W.; Lee, H.L.; Lu, K.T. Manufacture and Characteristics of Oil-Modified Refined Lacquer for Wood Coatings. Coatings 2018, 9, 11. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental Lacquer: A Natural Polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Pospı’sˇil, J.; Nesˇpurek, S. Photostabilization of Coatings. Mechanisms and Performance. Prog. Polym. Sci. 2000, 25, 1261–1335. [Google Scholar] [CrossRef]
- Kamiya, Y.; Lu, R.; Kumamoto, T.; Honda, T.; Miyakoshi, T. Deterioration of Surface Structure of Lacquer Films Due to Ultraviolet Irradiation. Surf. Interface Anal. 2006, 38, 1311–1315. [Google Scholar] [CrossRef]
- Niimura, N.; Iijima, Y.; Miyakoshi, T. Hardening Process and Surface Structure of Lacquer Films Studied by X-Ray Photoelectron Spectroscopy. Surf. Interface Anal. 1996, 24, 237–242. [Google Scholar] [CrossRef]
- Soucek, M.D.; Khattab, T.; Wu, J. Review of Autoxidation and Driers. Prog. Org. Coat. 2012, 73, 435–454. [Google Scholar] [CrossRef]
HALS Type | pH | Viscosity (cps, 25 °C) | Curing Time (h, 25 °C, 80%RH) | |
---|---|---|---|---|
TF a | HD b | |||
RL | 3.3 | 121 | 3.5 | 6.0 |
RL-H95 | 3.6 | 155 | 3.0 | 5.5 |
RL-H60 | 4.6 | 214 | 2.0 | 4.0 |
RL-H93 | 4.6 | 198 | 2.0 | 4.0 |
RL-H90 | 4.8 | 221 | 2.5 | 4.0 |
HALS Type | After 192 h UV Exposure | ||
---|---|---|---|
ΔE* | ΔL* | ΔYI | |
RL | 42.3 | 17.9 | 102.8 |
RL-H95 | 45.9 | 21.3 | 79.0 |
RL-H60 | 19.6 | 4.6 | 78.8 |
RL-H93 | 23.5 | 6.1 | 90.0 |
RL-H90 | 19.6 | 4.6 | 78.5 |
HALS Type | 60°Gloss (%) | Ra (nm) | Adhesion (grade) | Hardness (könig, s) | Impact Resistance (300 g, cm) |
---|---|---|---|---|---|
RL | 48 ± 1 | 88.5 | 10 | 107 ± 3 | 5 |
RL-H95 | 37 ± 1 | 95.3 | 8 | 111 ± 1 | 10 |
RL-H60 | 58 ± 1 | 41.8 | 8 | 116 ± 1 | 10 |
RL-H90 | 55 ± 1 | 53.7 | 8 | 112 ± 1 | 10 |
RL-H93 | 68 ± 2 | 39.6 | 8 | 113 ± 1 | 10 |
HALS Type | Mass Retention (wt %) | Tg (°C) | Tensile Strength (MPa) | Elongation at Break (%) | Abrasion Resistance (mg/1000 circles) |
---|---|---|---|---|---|
RL | 91.4 ± 0.5 | 99 | 18.8 ± 1.0 | 15.6 ± 0.6 | 12.7 ± 1.6 |
RL-H95 | 89.4 ± 0.2 | 91 | 15.1 ± 2.2 | 6.3 ± 1.3 | 13.3 ± 2.1 |
RL-H60 | 90.4 ± 0.4 | 97 | 10.3 ± 1.2 | 3.8 ± 0.9 | 36.7 ± 0.7 |
RL-H90 | 90.3 ± 1.1 | 94 | 18.8 ± 2.7 | 7.7 ± 1.5 | 15.9 ± 1.4 |
RL-H93 | 89.7 ± 0.2 | 91 | 14.6 ± 0.6 | 5.8 ± 0.7 | 24.4 ± 3.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-W.; Lee, J.-J.; Lu, K.-T. The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer. Polymers 2020, 12, 990. https://doi.org/10.3390/polym12040990
Chang C-W, Lee J-J, Lu K-T. The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer. Polymers. 2020; 12(4):990. https://doi.org/10.3390/polym12040990
Chicago/Turabian StyleChang, Chia-Wei, Jia-Jhen Lee, and Kun-Tsung Lu. 2020. "The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer" Polymers 12, no. 4: 990. https://doi.org/10.3390/polym12040990
APA StyleChang, C.-W., Lee, J.-J., & Lu, K.-T. (2020). The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer. Polymers, 12(4), 990. https://doi.org/10.3390/polym12040990