A Silk Fibroin Based Hydration Accelerator for Root Canal Filling Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time to Initial Set
2.2. Diametral Tensile Strength
2.3. Scanning Electronic Microscopy (SEM) of Cement Surfaces
2.4. Cell Culture, Cytotoxicity, and Proliferation Assay
2.5. Scanning Electronic Microscopy (SEM) of Cell Morphology
2.6. Data Analysis
3. Results
3.1. Initial Setting Time and Handling Properties
3.2. Mechanical Physical Properties
3.3. Crystallization of Cement Surfaces
3.4. Viability of Osteoblast-like Cells on MTA
3.5. Cell Morphology on Cement Surfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuks, A.B. Vital Pulp Therapy with New Materials for Primary Teeth: New Directions and Treatment Perspectives. J. Endod. 2008, 34, S18–S24. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Monsef, M.; Torabinejad, M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod. 1993, 19, 541–544. [Google Scholar] [CrossRef]
- Saunders, W.P. A Prospective Clinical Study of Periradicular Surgery Using Mineral Trioxide Aggregate as a Root-end Filling. J. Endod. 2008, 34, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Kano, B. 12—Endodontic materials: From old materials to recent advances. In Advanced Dental Biomaterials; Khurshid, Z., Najeeb, S., Zafar, M.S., Sefat, F., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 255–299. [Google Scholar]
- Alhezaimi, K.; Al-Shalan, T.A.; Naghshbandi, J.; Oglesby, S.; Simon, J.H.; Rotstein, I. Antibacterial Effect of Two Mineral Trioxide Aggregate (MTA) Preparations Against Enterococcus faecalis and Streptococcus sanguis In Vitro. J. Endod. 2006, 32, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Linsuwanont, P. MTA apexification combined with conventional root canal retreatment. Aust. Endod. J. 2003, 29, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.M.; Sakai, V.T.; Silva, T.C.; Santos, C.F.; Machado, M.A.A.M.; Abdo, R.C.C. Repair of furcal perforation treated with mineral trioxide aggregate in a primary molar tooth: 20-month follow-up. J. Dent. Child. (Chic) 2008, 75, 188–191. [Google Scholar]
- Shayegan, A.; Petein, M.; Abbeele, A.V. Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 536–542. [Google Scholar] [CrossRef]
- Economides, N.; Pantelidou, O.; Kokkas, A.; Tziafas, D. Short-term periradicular tissue response to mineral trioxide aggregate (MTA) as root-end filling material. Int. Endod. J. 2003, 36, 44–48. [Google Scholar] [CrossRef]
- Schmitt, D.; Lee, J.; Bogen, G. Multifaceted use of ProRootTM MTA root canal repair material. Pediatric Dent. 2001, 23, 326–330. [Google Scholar]
- Lovschall, H.; Ranjkesh, B.; Illemann, K.; Schmidt, O.H.; Birn, L.B.; Skibsted, J. Gillmore Testing of Initial Setting-Time: iMTA, Dycal, Biodentine, and MTA. 2014. Available online: https://www.researchgate.net/publication/262643204_Gillmore_testing_of_initial_setting-time_iMTA_Dycal_Biodentine_and_MTA (accessed on 24 April 2020).
- Butt, N.; Bali, A.; Talwar, S.; Chaudhry, S.; Nawal, R.; Yadav, S. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J. Dent. Res. 2014, 25, 692. [Google Scholar] [CrossRef]
- Camilleri, J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. J. Endod. 2015, 41, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-C.; Teng, N.-C.; Lin, Y.-C.; Lee, P.-Y.; Ji, D.-Y.; Chen, C.-C.; Ke, E.-S.; Lee, S.-Y.; Yang, J.-C. A Novel Accelerator for Improving the Handling Properties of Dental Filling Materials. J. Endod. 2009, 35, 1292–1295. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.-Y.; Wu, H.-D.; Hsieh, S.-C.; Teng, N.-C.; Chen, C.-C.; Ke, E.-S.; Lin, Y.-C.; Lee, S.-Y.; Yang, J.-C. Effects of a Novel Hydration Accelerant on the Biological and Mechanical Properties of White Mineral Trioxide Aggregate. J. Endod. 2011, 37, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.N.; Preda, R.C.; Yucel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef]
- Sofia, S.; McCarthy, M.B.; Gronowicz, G.; Kaplan, D.L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 2001, 54, 139–148. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, H.-J.; Vunjak-Novakovic, G.; Kaplan, D.L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006, 27, 6064–6082. [Google Scholar] [CrossRef]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Mieszawska, A.J.; Fourligas, N.; Georgakoudi, I.; Ouhib, N.M.; Belton, D.J.; Perry, C.C.; Kaplan, D.L. Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 2010, 31, 8902–8910. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.S.; Ullah, R.; Qamar, Z.; Fareed, M.A.; Amin, F.; Khurshid, Z.; Sefat, F. 2—Properties of Dental Biomaterials. In Advanced Dental Biomaterials; Khurshid, Z., Najeeb, S., Zafar, M.S., Sefat, F., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 7–35. [Google Scholar]
- Khurshid, Z.; Zafar, M.S.; Najeeb, S.; Nejatian, T.; Sefat, F. 1—Introduction to dental biomaterials and their advances. In Advanced Dental Biomaterials; Khurshid, Z., Najeeb, S., Zafar, M.S., Sefat, F., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 1–5. [Google Scholar]
- Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Lee, B.-N.; Hwang, I.-N.; Jang, J.-H.; Chang, H.-S.; Hwang, I.-N.; Yang, S.-Y.; Park, Y.-J.; Son, H.-H.; Oh, W.-M. Improvement of the Properties of Mineral Trioxide Aggregate by Mixing with Hydration Accelerators. J. Endod. 2011, 37, 1433–1436. [Google Scholar] [CrossRef]
- Chankow, S.; Luemunkong, S.; Kanokpanont, S. Conformational transitions of thai silk fibroin secondary structures. In Proceedings of the 2016 9th Biomedical Engineering International Conference (BMEiCON), Laung Prabang, Laos, 7–9 December 2016; pp. 1–5. [Google Scholar]
- Ajisawa, A. Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution Studies on the dissolution of silk fibroin. (IX). J. Sericultural Sci. Jpn. 1998, 67, 91–94. [Google Scholar]
- Ngamwongsatit, P.; Banada, P.; Panbangred, W.; Bhunia, A.K. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J. Microbiol. Methods 2008, 73, 211–215. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Wang, W.-H.; Lin, F.-H.; Lin, C.-P. Hydration behaviors of calcium silicate-based biomaterials. J. Formos. Med. Assoc. 2017, 116, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Kahler, B.; Chugal, N.; Lin, L.M. Alkaline Materials and Regenerative Endodontics: A Review. Materials (Basel) 2017, 10, 1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, B.S. Managing Endodontic Failure in Practice; Quintessence Publishing: Berlin, Germany, 2019. [Google Scholar]
- Torabinejad, M.; Watson, T.; Ford, T.P. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part I: Chemical, Physical, and Antibacterial Properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; T. Telford: London, UK, 1997. [Google Scholar]
- Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-W. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor. Dent. Endod. 2012, 37, 188–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullard, J.W. A Determination of Hydration Mechanisms for Tricalcium Silicate Using a Kinetic Cellular Automaton Model. J. Am. Ceram. Soc. 2008, 91, 2088–2097. [Google Scholar] [CrossRef]
- Saatchi, M.; Shokraneh, A.; Navaei, H.; Maracy, M.; Shojaei, H. Antibacterial effect of calcium hydroxide combined with chlorhexidine on Enterococcus faecalis: A systematic review and meta-analysis. J. Appl. Oral Sci. 2014, 22, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Chivian, N. Clinical applications of mineral trioxide aggregate. J. Endod. 1999, 25, 197–205. [Google Scholar] [CrossRef]
- Rabbany, S.Y.; Pastore, J.; Yamamoto, M.; Miller, T.; Rafii, S.; Aras, R.; Penn, M. Continuous Delivery of Stromal Cell-Derived Factor-1 from Alginate Scaffolds Accelerates Wound Healing. Cell Transplant. 2010, 19, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ber, B.S.; Hatton, J.F.; Stewart, G.P. Chemical Modification of ProRoot MTA to Improve Handling Characteristics and Decrease Setting Time. J. Endod. 2007, 33, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Kogan, P.; He, J.; Glickman, G.N.; Watanabe, I. The Effects of Various Additives on Setting Properties of MTA. J. Endod. 2006, 32, 569–572. [Google Scholar] [CrossRef]
- Wiltbank, K.B.; Schwartz, S.A.; Schindler, W.G. Effect of Selected Accelerants on the Physical Properties of Mineral Trioxide Aggregate and Portland Cement. J. Endod. 2007, 33, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-N.; Kim, H.-J.; Chang, H.-S.; Hwang, I.-N.; Oh, W.-M.; Kim, J.-W.; Koh, J.-T.; Min, K.-S.; Choi, C.-H.; Hwang, Y.-C. Effects of Mineral Trioxide Aggregate Mixed with Hydration Accelerators on Osteoblastic Differentiation. J. Endod. 2014, 40, 2019–2023. [Google Scholar] [CrossRef]
- Zafar, M.S.; Al-Samadani, K.H. Potential use of natural silk for bio-dental applications. J. Taibah Univ. Med. Sci. 2014, 9, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S. Silk Fibroin ofBombyx moriIs Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-chain, L-chain, and P25, with a 6:6:1 Molar Ratio. J. Boil. Chem. 2000, 275, 40517–40528. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.S.; Belton, D.J.; Hanby, B.; Kaplan, D.L.; Perry, C.C. Functional Material Features of Bombyx mori Silk Light versus Heavy Chain Proteins. Biomacromolecules 2015, 16, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagas, E.; Cehreli, Z.C.; Uyanik, M.O.; Vallittu, P.K.; Lassila, L.V. Reinforcing Effect of Glass Fiber–incorporated ProRoot MTA and Biodentine as Intraorifice Barriers. J. Endod. 2016, 42, 1673–1676. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Lee, B.-S.; Lin, F.-H.; Lin, A.Y.; Lan, W.-H.; Lin, C.-P. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004, 25, 787–793. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.D.C.; Segura-Egea, J.J.; Díaz-Cuenca, A.; Jimenez-Sanchez, M. Physicochemical parameters—Hydration performance relationship of the new endodontic cement MTA Repair HP. J. Clin. Exp. Dent. 2019, 11, e739–e744. [Google Scholar] [CrossRef]
- Kirchheim, A.P.; Fernàndez-Altable, V.; Monteiro, P.J.M.; Molin, D.C.C.D.; Casanova, I. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime. J. Mater. Sci. 2009, 44, 2038–2045. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, B.-S.; Lee, J.; Cho, D.; Kwon, O.H.; Park, W.H. Silk fibroin/hydroxyapatite composite hydrogel induced by gamma-ray irradiation for bone tissue engineering. Biomater. Res. 2017, 21, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Powder | SavDen® MTA | ProRoot® White MTA | ||
---|---|---|---|---|
Liquid | 5 wt% SF solution | water | 5 wt% SF solution | water |
Initial setting time (min) | 10.1 ± 0.9 | 17.5 ± 1.8 | 25.3 ± 2.1 | 157.5 ± 8.9 |
Handling properties | Excellent | Good | Excellent | Very poor (sand feel) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-S.; Hsieh, S.-C.; Teng, N.-C.; Lee, W.-F.; Negi, P.; Belem, W.F.; Wu, H.-C.; Yang, J.-C. A Silk Fibroin Based Hydration Accelerator for Root Canal Filling Materials. Polymers 2020, 12, 994. https://doi.org/10.3390/polym12040994
Huang C-S, Hsieh S-C, Teng N-C, Lee W-F, Negi P, Belem WF, Wu H-C, Yang J-C. A Silk Fibroin Based Hydration Accelerator for Root Canal Filling Materials. Polymers. 2020; 12(4):994. https://doi.org/10.3390/polym12040994
Chicago/Turabian StyleHuang, Ching-Shuan, Sung-Chih Hsieh, Nai-Chia Teng, Wei-Fang Lee, Poonam Negi, Wendimi Fatimata Belem, Hsuan-Chen Wu, and Jen-Chang Yang. 2020. "A Silk Fibroin Based Hydration Accelerator for Root Canal Filling Materials" Polymers 12, no. 4: 994. https://doi.org/10.3390/polym12040994
APA StyleHuang, C.-S., Hsieh, S.-C., Teng, N.-C., Lee, W.-F., Negi, P., Belem, W. F., Wu, H.-C., & Yang, J.-C. (2020). A Silk Fibroin Based Hydration Accelerator for Root Canal Filling Materials. Polymers, 12(4), 994. https://doi.org/10.3390/polym12040994