Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Synthetic Procedures
2.3.1. ROP of M4 Initiated by NeOH
2.3.2. Synthesis of SiO2 Nanoparticles
2.3.3. Synthesis of SiO2@Fe2O3 Spindle-Shaped Nanoparticles
2.3.4. SI–ROP of M4
3. Results
3.1. Parameter Evaluation in Model Solution-Based Polymerization
3.1.1. Ring–Chain Equilibrium
3.1.2. Molar Mass Control
3.2. Surface-Initiated Ring-Opening Polymerization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mefford, O.T.; Vadala, M.L.; Goff, J.D.; Carroll, M.R.J.; Mejia-ariza, R.; Caba, B.L.; Pierre, T.G.S.; Woodward, R.C.; Davis, R.M.; Riffle, J.S.; et al. Stability of Polydimethylsiloxane-Magnetite Nanoparticle Dispersions Against Flocculation: Interparticle Interactions of Polydisperse Materials. Langmuir 2008, 24, 5060–5069. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Nederberg, F.; Lim, L.S.; Kånge, R.; Hawker, C.J.; Mo, M.; Hedrick, J.L.; Gu, Y.; Shah, R.; Abbott, N.L. Stannous (II) Trifluoromethane Sulfonate: A Versatile Catalyst for the Controlled Ring-Opening Polymerization of Lactides: Formation of Stereoregular Surfaces from Polylactide “Brushes”. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3529–3538. [Google Scholar] [CrossRef]
- Alexander, S. Adsorption of chain polymers with a polar head: A scaling description. J. Phys. 1977, 38, 983–987. [Google Scholar] [CrossRef]
- De Gennes, P.G.G. Conformations of Polymers Attached to Interface. Macromolecules 1980, 13, 1069–1075. [Google Scholar] [CrossRef]
- Thünemann, A.F.; Schütt, D.; Kaufner, L.; Pison, U.; Möhwald, H. Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-bloc-poly(glutamic acid). Langmuir 2006, 15, 2351–2357. [Google Scholar] [CrossRef]
- Si, S.; Kotal, A.; Mandal, T.K.; Giri, S.; Nakamura, H.; Kohara, T. Size-Controlled Synthesis of Magnetite Nanoparticles in the Presence of Polyelectrolytes. Chem. Mater. 2004, 16, 3489–3496. [Google Scholar] [CrossRef]
- Mcewan, M.; Green, D. Rheological impacts of particle softness on wetted polymer-grafted silica nanoparticles in polymer melts. Soft Matter 2009, 5, 1705–1716. [Google Scholar] [CrossRef]
- Yoon, K.R.; Chi, S.; Lee, K.; Lee, J.K.; Kim, J.; Koh, Y.; Joo, S.; Yun, S.; Choi, I.S. Surface-initiated ring-opening polymerization of p-dioxane from gold and silicon oxide surfaces. J. Mater. Chem. 2003, 13, 2910–2914. [Google Scholar] [CrossRef]
- Dai, Q.; Lam, M.; Swanson, S.; Yu, R.H.R.; Milliron, D.J.; Topuria, T.; Jubert, P.O.; Nelson, A. Monodisperse cobalt ferrite nanomagnets with uniform silica coatings. Langmuir 2010, 26, 17546–17551. [Google Scholar] [CrossRef]
- Schmidt, A.M. The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of ε-caprolactone. Macromol. Rapid Commun. 2005, 26, 93–97. [Google Scholar] [CrossRef]
- Green, D.L.; Mewis, J.; Engineering, C.; Uni, V.; Way, E.; Charlottes, V. Connecting the Wetting and Rheological Behaviors of Poly(dimethylsiloxane)-Grafted Silica Spheres in Poly(dimethylsiloxane) Melts. Langmuir 2006, 22, 9546–9553. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Park, E.J.; Kim, Y.D. Removal of oil by gelation using hydrophobic silica nanoparticles. J. Ind. Eng. Chem. 2014, 20, 1231–1235. [Google Scholar] [CrossRef]
- Mouhli, A.; Ayeb, H.; Othman, T.; Fresnais, J.; Dupuis, V.; Nemitz, I.R.; Pendery, J.S.; Rosenblatt, C.; Sandre, O.; Lacaze, E. Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Phys. Rev. E 2017, 96, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brillouin, L.L.; Saclay, C.E.N.; Sur, G.; Cedex, Y. Building of Grafted Layer. 1. Role of the Concentration of Free Polymers in the Reaction Bath. Macromolecules 1991, 24, 5158–5166. [Google Scholar]
- Prucker, O.; Rühe, J. Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles. Macromolecules 1998, 31, 602–613. [Google Scholar] [CrossRef]
- Shah, R.R.; Merreceyes, D.; Husemann, M.; Rees, I.; Abbott, N.L.; Hawker, C.J.; Hedrick, J.L. Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules 2000, 33, 597–605. [Google Scholar] [CrossRef]
- Joubert, M.; Delaite, C.; Bourgeat-lami, E.; Dumas, P. Ring-Opening Polymerization of e-Caprolactone and L-Lactide from Silica Nanoparticles Surface. J. Polym. Sci. Part A Polym. Chem. 2003, 42, 1976–1984. [Google Scholar] [CrossRef]
- Lahann, J.; Langer, R. Surface-Initiated Ring-Opening Polymerization of e-Caprolactone from a Patterned Poly (hydroxymethyl-p-xylylene). Macromol. Rapid Commun. 2001, 22, 968–971. [Google Scholar] [CrossRef]
- Kaiser, A.; Dutz, S.; Schmidt, A.M. Kinetic Studies of Surface-Initiated Atom Transfer Radical Polymerization in the Synthesis of Magnetic Fluids. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 7012–7020. [Google Scholar] [CrossRef]
- Choi, I.S.; Langer, R. Surface-Initiated Polymerization of l-Lactide: Coating of Solid Substrates with a Biodegradable Polymer. Macromolecules 2001, 34, 5361–5363. [Google Scholar] [CrossRef]
- Clarson, S.J.; Semlyen, J.A. Siloxane Polymers; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Mark, J.E. Overview of Siloxane Polymers. In Am. Chem. Soc.; ACS Symposium Series: Singapore, 2000; pp. 1–10. ISBN 9780841236134. [Google Scholar]
- Normand, F.; He, X.W.; Widmaier, J.M.; Meyer, G.C. Linear polycondensation of a,w-dihydroxy polydimethylsiloxane, catalyzed by stannous octoate. Eur. Pol. J. 1989, 25, 371–374. [Google Scholar] [CrossRef]
- He, X.; Lappa, A.; Herz, J. Chain branching of poly(dimethylsiloxane): A competitive side reaction of the hydrosilylation reaction. Makromol. Chem. 1988, 189, 1061–1075. [Google Scholar] [CrossRef]
- Wilczek, L.; Rubinsztajn, S.; Chojnowski, J. Comparison of the cationic polymerization of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane. Makromol. Chem. 1986, 187, 39–51. [Google Scholar] [CrossRef]
- Dubois, P.; Coulembier, O.; Raquez, J.-M. Handbook of Ring-Opening; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2009; ISBN 9783527317103. [Google Scholar]
- Hurd, D.T. On the Mechanism of the Acid-catalyzed Rearrangement of Siloxane Linkages in Organopolysiloxanes. J. Am. Chem. Soc. 1955, 77, 2998–3001. [Google Scholar] [CrossRef]
- Polymerisation, T.A. The Acid-catalysed Polymerisation of Cyclosiloxanes. Part I. The Kinetics of the Polymerization of Octamethylcycloterasiloxane Catalyzed by anhydrous Ferric Chloride-Hydrogen Chloride. J. Chem. Soc. 1965, 1205, 2027–2035. [Google Scholar]
- Bi, C.; Xiaoii, Z.; Lingmint, Y.I.; Fengqiu, C. Cationic Ring Opening Polymerization of Octamethylcyclotetrailoxane Initiated by Acid Treated Bentonite. Chin. J. Polym. Sci. 2007, 15, 661–665. [Google Scholar]
- Wilczek, L.; Chojnowski, J. Acidolytic Ring Opening of Cyclic Siloxane and Acetal Monomers. Role of Hydrogen Bonding in Cationic Polymerization Initiated with Protonic Acids. Macromolecules 1981, 14, 9–17. [Google Scholar] [CrossRef]
- Chojnowski, J. Kinetieally Controlled Siloxane Ring-Opening Polymerization. J. Inorg. Organomet. Polym. 1991, 1, 299–322. [Google Scholar] [CrossRef]
- Grzelka, A.; Chojnowski, J.; Fortuniak, W.; Richard, G.; Hupfield, P.C. Kinetics of the Anionic Ring Opening Polymerization of Cyclosiloxanes Initiated with a Superbase. J. Inorg. Organomet. Polym. 2004, 14, 85–99. [Google Scholar] [CrossRef]
- Semlyen, J.A. Ring-Chain Equilibria and the Conformations of Polymer Chains. Adv. Pol. Sci. 1976, 21, 41–75. [Google Scholar]
- Hurd, B.D.T.; Osthoff, R.C.; Corrin, M.L.; Si, S.O.; Osthoff, C. The Mechanism of the Base-catalyzed Rearrangement of Organopolysiloxanes. J. Am. Chem. Soc. 1954, 76, 249–252. [Google Scholar] [CrossRef]
- Chojnowski, J.; Rubinsztajn, S.; Fortuniak, W.; Kurjata, J. Oligomer and polymer formation in hexamethylcyclotrisiloxane (D 3)-Hydrosilane systems under catalysis by tris(pentafluorophenyl) borane. J. Inorg. Organomet. Polym. 2007, 17, 173–187. [Google Scholar] [CrossRef]
- Fuchise, K.; Sato, K.; Shimada, S.; Igarashi, M.; Sato, K.; Shimada, S. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts†. R. Soc. Chem. 2018, 9, 2879–2891. [Google Scholar] [CrossRef] [PubMed]
- Molenberg, A.; Moller, M. Polymerization of cyclotrisiloxanes by organolithium compounds and P2-Et base. Macromol. Chem. Phys. 1997, 198, 717–726. [Google Scholar] [CrossRef]
- Hupfield, P.C.; Taylor, R.G. Ring-Opening Polymerization of Siloxanes Using Phosphazene Base Catalysts. J. Inorg. Organomet. Polym. 1999, 9, 17–34. [Google Scholar] [CrossRef]
- Molenberg, A.; Moller, M. A fast catalyst system for the ring-opening polymerization of cyclosiloxanes. Macromol. Rapid Commun. 1995, 16, 449–453. [Google Scholar] [CrossRef]
- Esswein, B.; Molenberg, A.; Möller, M. Use of polyiminophosphazene bases for ring-opening polymerizations. Macromol. Symp. 1996, 107, 331–340. [Google Scholar] [CrossRef]
- Schwesinger, R.; Schlemper, H. Peralkylated Polyaminophosphazenes-Extremely Strong, Neutral Nitrogen Bases. Angew. Chem. Int. Ed. 1987, 26, 1167–1169. [Google Scholar] [CrossRef]
- Schwesinger, B.R.; Mij, M.; Peters, K.; Von Schnering, H.G. Novel, Very Strongly Basic, Pentacyclic “Proton Sponges” with Vinamidine Structure**. Angew. Chem. Int. Ed. 1987, 80, 1165–1167. [Google Scholar] [CrossRef]
- Esswein, B.; Möller, M. Polymerization of Ethylene Oxide with Alkyllithium Compounds and the Phosphazene Base “tBu-P4”. Angew. Chem. Int. Ed. 1996, 35, 623–625. [Google Scholar] [CrossRef]
- Wagner, H.L. The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene. J. Phys. Chem. Ref. Data 1985, 14, 1101–1106. [Google Scholar] [CrossRef]
- Mark James, E. Polymer Data Handbook; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Hartlen, K.D.; Athanasopoulos, A.P.T.; Kitaev, V. Facile Preparation of Highly Monodisperse Small Silica Spheres (15 to >200 nm ) Suitable for Colloidal Templating and Formation of Ordered Arrays. Langmuir 2008, 24, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Kratohvil, S.; Matjevic, E.; Matijević, E. Formation of Monodispersed Spindle-Type Hematite Particles 1. J. Colloid Interface Sci. 1984, 102, 146–151. [Google Scholar] [CrossRef]
- Wagner, J.; Autenrieth, T.; Hempelmann, R. Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4-SiO2 core shell particles]. J. Magn. Magn. Mater. 2002, 252, 4–6. [Google Scholar] [CrossRef]
- Van Ewijk, G.A.; Vroege, G.J.; Philipse, A.P. Convenient preparation methods for magnetic colloids. J. Magn. Magn. Mater. 1999, 201, 31–33. [Google Scholar] [CrossRef]
- Van Dyke, M.E.; Clarson, S.J. Reaction Kinetics for the Anionic Ring-Opening Polymerization of Tetraphenyltetramethylcyclotetrasiloxane Using a Fast Initiator System. J. Inorg. Organomet. Polym. 1998, 8, 111–117. [Google Scholar] [CrossRef]
- Zhao, J.; Hadjichristidis, N.; Schlaad, H. Polymerization Using Phosphazene Bases. In Anionic Polymerization; Springer: Tokyo, Japan, 2015; pp. 429–449. ISBN 9784431541868. [Google Scholar]
- Jacobson, H.; Stockmayer, W.H. Intramolecular Reaction in Polycondensations. I. The Theory of Linear Systems. J. Chem. Phys. 1950, 18, 1600–1606. [Google Scholar] [CrossRef]
- Flory, P.J.; Semlyen, J.A. Macrocyclization Equilibrium Constants and the Statistical Configuration of Poly(dimethylsiloxane) Chains. J. Am. Chem. Soc. 1966, 88, 3209–3212. [Google Scholar] [CrossRef]
- Hubert, S.; Hemery, P.; Boileau, S. Anionic polymerization of cyclosiloxanes with cryptates as counterions: New results. In Makromolekulare Chemie. Macromolecular Symposia; Hüthig & Wepf: Basel, Switzerland, 1986; Volume 252, pp. 247–252. [Google Scholar]
- Hinman, J.G.; Lough, A.J.; Morris, R.H. Properties of the Polyhydride Anions [WH5(PMe2Ph)3] and [ReH4(PMePh2)3] and Periodic Trends in the Acidity of Polyhydride Complexes. Inorg. Chem. 2007, 46, 4392–4401. [Google Scholar] [CrossRef]
- Pibre, G.; Chaumont, P.; Fleury, E.; Cassagnau, P. Ring-opening polymerization of decamethylcyclopentasiloxane initiated by a superbase: Kinetics and rheology. Polymer 2008, 49, 234–240. [Google Scholar] [CrossRef]
- Ek, S.; Root, A.; Peussa, M.; Niinistö, L. Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim. Acta 2001, 379, 201–212. [Google Scholar] [CrossRef]
SiO2 | |||||||||||
Series 3 | Series 5 | ||||||||||
mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | ||
0.57 | 0.045 | 0.371 | 4.44 | 23252 | 1.72 | 0.57 | 0.011 | 0.069 | 0.96 | 15802 | 2.09 |
0.72 | 0.045 | 0.395 | 4.65 | 24586 | 1.85 | 0.97 | 0.023 | 0.129 | 1.42 | 29864 | 2.04 |
0.96 | 0.045 | 0.413 | 4.57 | 20174 | 1.68 | 1.49 | 0.045 | 0.402 | 4.44 | 30593 | 1.97 |
1.17 | 0.024 | 0.421 | 4.36 | 25967 | 2.02 | 2.04 | 0.090 | 0.403 | 4.45 | 35748 | 2.15 |
1.49 | 0.024 | 0.402 | 4.08 | 30593 | 1.97 | 2.57 | 0.180 | 0.37 | 4.09 | 35521 | 2.04 |
SiO2@Fe2O3 | |||||||||||
Series 4 | Series 6 | ||||||||||
mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | ||
0.57 | 0.013 | 0.056 | 3.73 | 20493 | 2.74 | 0.57 | 0.003 | 0.073 | 4.73 | 19420 | 1.67 |
0.72 | 0.013 | 0.083 | 5.54 | 25428 | 1.67 | 0.97 | 0.006 | 0.130 | 8.64 | 23907 | 1.73 |
0.96 | 0.013 | 0.138 | 9.12 | 21355 | 2.31 | 1.49 | 0.013 | 0.091 | 4.57 | 35289 | 1.87 |
1.17 | 0.013 | 0.139 | 9.21 | 26830 | 1.71 | 2.04 | 0.026 | 0.083 | 5.53 | 37084 | 1.79 |
1.49 | 0.013 | 0.091 | 6.05 | 35289 | 1.87 | 2.57 | 0.052 | 0.082 | 3.73 | 34168 | 1.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, K.; Geller, S.; Acar, K.; Bach, P.; Tsarenko, E.; Schmidt, A. Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization. Polymers 2020, 12, 787. https://doi.org/10.3390/polym12040787
Koch K, Geller S, Acar K, Bach P, Tsarenko E, Schmidt A. Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization. Polymers. 2020; 12(4):787. https://doi.org/10.3390/polym12040787
Chicago/Turabian StyleKoch, Karin, Sven Geller, Kubilay Acar, Patricia Bach, Ekaterina Tsarenko, and Annette Schmidt. 2020. "Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization" Polymers 12, no. 4: 787. https://doi.org/10.3390/polym12040787
APA StyleKoch, K., Geller, S., Acar, K., Bach, P., Tsarenko, E., & Schmidt, A. (2020). Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization. Polymers, 12(4), 787. https://doi.org/10.3390/polym12040787