Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates
Abstract
:1. Introduction
2. Specimen Manufacturing and Experiments Details
- set of coupons characterised by a constant GIc of 510 J/m2 (toughened material);
- set of coupons characterized by a variable GIc, from 243 J/m2 to 456 J/m2 depending on delamination size (material sensitive to fibre bridging).
3. Numerical Procedure Description and Finite Elements Model Definition
3.1. SMXB FB Numerical Tool Description
3.2. Finite Elements Model
4. Numerical Results/Experimental Data Comparisons and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, W.S.; Mangalgiri, P.D. Investigation of fiber bridging in double cantilever beam specimens. J. Compos. Technol. Res. 1987, 9, 10–13. [Google Scholar]
- Nemat-Nasser, S.; Hori, M. Toughening by partial or full bridging of cracks in ceramics and fiber reinforced composites. Mech. Mater. 1987, 6, 245–269. [Google Scholar] [CrossRef]
- Huang, X.N.; Hull, D. Effects of fibre bridging on GIC of a unidirectional glass/epoxy composite. Compos. Sci. Technol. 1989, 35, 283–299. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos. Struct. 2003, 59, 481–487. [Google Scholar] [CrossRef]
- Schoeppner, G.A.; Abrate, S. Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 903–915. [Google Scholar] [CrossRef]
- Ho-Cheng, H.; Dharan, C.K.H. Delamination during drilling in composite laminates. J. Eng. Ind. 1990, 112, 236–239. [Google Scholar] [CrossRef]
- Mi, Y.; Crisfield, M.A.; Davies, G.A.O.; Hellweg, H.-B. Progressive delamination using interface elements. J. Compos. Mater. 1998, 32, 1246–1272. [Google Scholar] [CrossRef]
- Reeder, J.R.; Crews, J.H., Jr. Mixed-mode bending method for delamination testing. Aiaa J. 1990, 28, 1270–1276. [Google Scholar] [CrossRef] [Green Version]
- Pelstring, R.; Michael, M.; Ram, C. Stitching to improve damage tolerance of composites. Int. SAMPE Symp. Exhib. (Proc.) 1989, 34 Pt 2, 1519–1528. [Google Scholar]
- Dow Marvin, B.; Smith Donald, L. Damage-tolerant composite materials produced by stitching carbon fabrics. Natl. Sampe Tech. Conf. 1989, 21, 595–605. [Google Scholar]
- Shu, D.; Mai, Y.-W. Effect of stitching on interlaminar delamination extension in composite laminates. Compos. Sci. Technol. 1993, 49, 165–171. [Google Scholar] [CrossRef]
- Yasaee, M.; Lander, J.K.; Allegri, G.; Hallett, S.R. Experimental characterisation of mixed mode traction-displacement relationships for a single carbon composite Z-pin. Compos. Sci. Technol. 2014, 94, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Dantuluri, V.; Maiti, S.; Geubelle, P.H.; Patel, R.; Kilic, H. Cohesive modeling of delamination in Z-pin reinforced composite laminates. Compos. Sci. Technol. 2007, 67, 616–631. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Leong, K.H.; Herszberg, I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 979–991. [Google Scholar] [CrossRef]
- Steeves, C.A.; Fleck, N.A. In-plane properties of composite laminates with through-thickness pin reinforcement. Int. J. Solids Struct. 2006, 43, 3197–3212. [Google Scholar] [CrossRef] [Green Version]
- Quan, D.; Mischo, C.; Li, X.; Scarselli, G.; Ivanković, A.; Murphy, N. Improving the electrical conductivity and fracture toughness of carbon fibre/epoxy composites by interleaving MWCNT-doped thermoplastic veils. Compos. Sci. Technol. 2019, 182, 107775. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, K.K.; Behera, R.P. Enhancement of impact properties by using multiwall carbon nanotubes as secondary reinforcement in glass/epoxy laminates. J. Test. Eval. 2020, 48, JTE20170510. [Google Scholar] [CrossRef]
- Lau, K.-T.; Gu, C.; Hui, D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 2006, 37, 425–436. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Al-Sabagh, A.; Taha, E.; Kandil, U.; Nasr, G.-A.; Taha, M.R. Monitoring damage propagation in glass fiber composites using carbon nanofibers. Nanomaterials 2016, 6, 169. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, N.A.; Woo, R.S.C.; Kim, J.-K.; Leung, C.C.K.; Munir, A. Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos. Part A Appl. Sci. Manuf. 2007, 38, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Heidarian, M.; Shishesaz, M.R.; Kassiriha, S.M.; Nematollahi, M. Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog. Org. Coat. 2010, 68, 180–188. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F. Digital imaging techniques in experimental stress analysis. Opt. Eng. 1982, 21, 427–431. [Google Scholar] [CrossRef]
- Chu, T.C.; Ranson, W.F.; Sutton, M.A.; Peters, W.H. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Sirohi, R.S. Optical Methods of Measurement: Wholefield Techniques, 2nd ed.; CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Bornert, M.; Brémand, F.; Doumalin, P.; Dupré, J.-C.; Fazzini, M.; Grédiac, M.; Hild, F.; Mistou, S.; Molimard, J.; Orteu, J.-J.; et al. Assessment of digital image correlation measurement errors: Methodology and results. Exp. Mech. 2009, 49, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, H. Ultrasound and damage detection in CFRP using fiber Bragg grating sensors. Compos. Sci. Technol. 2006, 66, 676–683. [Google Scholar] [CrossRef]
- Roberts, R.A. Computational prediction of micro-crack induced ultrasound attenuation in CFRP composites. J. Nondestruct. Eval. 2014, 33, 443–457. [Google Scholar] [CrossRef]
- Maldague, X. Nondestructive Evaluation of Materials by Infrared Thermography; Springer: New York, NY, USA, 1993. [Google Scholar]
- Toscano, C.; Riccio, A.; Camerlingo, F.; Meola, C. Lockin thermography to monitor propagation of delamination in CFRP composites during compression tests. In Proceedings of the 11th Quantitative Infrared Thermography, Naples, Italy, 11–14 June 2012. [Google Scholar]
- Riccio, A.; Russo, A.; Sellitto, A.; Raimondo, A. Development and application of a numerical procedure for the simulation of the “Fibre Bridging” phenomenon in composite structures. Compos. Struct. 2017, 168, 104–119. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.M.; Xie, H.M.; Asundi, A. Twodimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Giachetti, A. Matching techniques to compute image motion. Image Vis. Comput. 2000, 18, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Krueger, R. The Virtual Crack Closure Technique: History, Approach and Applications. ICASE Report No. 2002-10. Appl. Mech. Rev. 2004, 57, 109–143. [Google Scholar] [CrossRef]
- ANSYS®. Academic Research Mechanical, Release 18.1, Help System. In Coupled Field Analysis Guide; ANSYS, Inc.: Canonsburg, PA, USA, August 2005. [Google Scholar]
- ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D7905/D7905M-14, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshohocken, PA, USA, 2014.
- Li, J.; Lee, S.; Lee, E.; O’Brien, T. Evaluation of the Edge Crack Torsion (ECT) Test for Mode III Interlaminar Fracture Toughness of Laminated Composites. J. Compos. Technol. Res. 1997, 19, 174–183. [Google Scholar]
- Pietropaoli, E.; Riccio, A. On the robustness of finite element procedures based on Virtual Crack Closure Technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Compos. Sci. Technol. 2010, 70, 1288–1300. [Google Scholar] [CrossRef]
- Mehdi Farshad; Plastic Pipe Systems (Eds.) Mehdi Farshad, 4—Buckling of Plastic Pipes; Elsevier Science: Amsterdam, The Netherlands, 2006; pp. 101–133. [Google Scholar]
- Caulfeild, S. Composite skin snap-through buckling under transient dynamic pressure loads 2nd Joint US-Canada Conference on Composites—American Society for Composites. In Proceedings of the 26th Annual Technical Conference: Canadian Association for Composite Structures and Materials, Montreal, QC, Canada, 26–28 September 2011. [Google Scholar]
SG1bis | SG1 | SG2 | DIC | |||
---|---|---|---|---|---|---|
0° | 0° | 90° | 0° | 90° | ||
TOUGH#1 | ☑ | ☑ | ☑ | ☑ | ||
TOUGH#2 | ☑ | ☑ | ☑ | ☑ | ||
TOUGH#3 | ☑ | ☑ | ||||
MFB#1 | ☑ | ☑ | ☑ | ☑ | ||
MFB#2 | ☑ | ☑ | ☑ | ☑ | ||
MFB#3 | ☑ | ☑ |
Global Buckling | Delamination Buckling | Snap-Through Buckling | ||||
---|---|---|---|---|---|---|
Load [kN] | Strain [με] | Load [kN] | Strain [με] | Load [kN] | Strain [με] | |
TOUGH#1 | 44.37 | −1780 | 39.4 | −1490 | 40.4 | −9960 |
TOUGH#2 | 45.2 | −1790 | 39.1 | −1480 | 40.3 | −8700 |
TOUGH#3 | 45.2 | −1785 | 39.3 | −1483 | 40.3 | −8790 |
MFB#1 | 41.2 | −1600 | 39.5 | −1470 | 39.3 | −6830 |
MFB#2 | 40.9 | −1600 | 39.1 | −1475 | 39.0 | −6750 |
MFB#3 | 40.1 | −1590 | 39.2 | −1471 | 39.4 | −7000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccio, A.; Russo, A.; Sellitto, A.; Toscano, C.; Alfano, D.; Zarrelli, M. Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates. Polymers 2020, 12, 554. https://doi.org/10.3390/polym12030554
Riccio A, Russo A, Sellitto A, Toscano C, Alfano D, Zarrelli M. Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates. Polymers. 2020; 12(3):554. https://doi.org/10.3390/polym12030554
Chicago/Turabian StyleRiccio, Aniello, Angela Russo, Andrea Sellitto, Cinzia Toscano, Davide Alfano, and Mauro Zarrelli. 2020. "Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates" Polymers 12, no. 3: 554. https://doi.org/10.3390/polym12030554
APA StyleRiccio, A., Russo, A., Sellitto, A., Toscano, C., Alfano, D., & Zarrelli, M. (2020). Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates. Polymers, 12(3), 554. https://doi.org/10.3390/polym12030554