Films Based on a Blend of PVC with Copolymer of 3-Hydroxybutyrate with 3-Hydroxyhexanoate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- PVC suspension, Kf = 58 (Shintech Inc., Houston, TX, USA);
- Organotin thermostabilizer based on dioctyltin bis (2-ethylhexyl thioglycolate) (Galata Chemicals, Southbury, CT, USA);
- Glycerol ester as an internal lubricant (Emery Oleochemicals, Telok Panglima Garang, Malaysia);
- Oxidized polyethylene wax as an external lubricant (Honeywell, Charlotte, NC, USA);
- A copolymer of 3HB with 3HH, the number average molecular weight of 500,000–600,000 daltons, polydispersity 2.3, the ratio of 3HB/3HH = 95/5 (Kaneka, Takasago, Japan).
2.2. Preparation of Composition
2.3. Methods
2.3.1. Turbidity Determination
2.3.2. Color Determination
2.3.3. Gloss
2.3.4. Thermal Stability
2.3.5. Differential Scanning Calorimetry, DSC
2.3.6. Thermomechanical Analysis, TMA
2.3.7. Thermal Gravimetric Analysis, TGA
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Selke, S.E.M.; Culter, J.D. Plastics Packaging 3E Properties, Processing, Applications, and Regulations; Carl Hanser Verlag GmbH & Co: Munich, Germany, 2016; p. 487. [Google Scholar] [CrossRef] [Green Version]
- Ciacci, L.; Passarini, F.; Vassura, I. The European PVC cycle: In-use stock and flows. Resour. Conserv. Recycl. 2017, 123, 108–116. [Google Scholar] [CrossRef]
- Janajreh, I.; Alshrah, M.; Zamzam, S. Mechanical recycling of PVC plastic waste streams from cable industry: A case study. Sustain. Cities Soc. 2015, 18, 13–20. [Google Scholar] [CrossRef]
- Braun, D. Recycling of PVC. Prog. Polym. Sci. 2011, 27, 2171–2195. [Google Scholar] [CrossRef]
- Sin, L.T.; Rahmat, A.R.; Rahmat, W.A. Polylactic Acid—PLA Biopolymer Technology and Application; William Andrew: Norwich, NY, USA, 2012; p. 352. [Google Scholar]
- Fakirov, S. Biodegradable Polyesters; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2015; p. 347. [Google Scholar] [CrossRef]
- Yu, L. Biodegradable Polymer Blends and Composites from Renewable Resources; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly (lactic acid) Modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Rosenboom, J.G.; Hohl, D.K.; Fleckenstein, P.; Storti, G. Bottle-grade polyethylene furanoate from ring opening polymerisation of cyclic oligomers. Nat. Commun. 2018, 9, 2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, C.S.K.; Ghai, R.; Rashmi Kalia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef]
- Koning, C.; van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for Compatibilization of Polymers Blends. Prog. Polym. Sci. 1998, 23, 707–757. [Google Scholar] [CrossRef]
- Wilkes, C.E.; Daniels, C.A.; Summers, J.W. PVC Handbook; Hanser Publications: Cincinnati, OH, USA, 2005; p. 723. [Google Scholar]
- Biron, M. Industrial Applications of Renewable Plastics; William Andrew Publishing: Norwich, NY, USA, 2016; p. 632. [Google Scholar] [CrossRef]
- Tanase, E.E.; Popa, M.E.; Rapa, M.; Popa, O. PHB/Cellulose fibers based materials: Physical, mechanical and barrier properties. Agric. Agric. Sci. Procedia 2015, 6, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Grumezescu, A.M. Food Packaging; Academic Press: Cambridge, MA, USA, 2017; p. 796. [Google Scholar]
- Sudesh, K. Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; p. 140. [Google Scholar]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of polymers; ChemTech Publishing: Toronto, ON, Canada; New York, NY, USA, 2012; p. 696. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H. Practical Guide to Microbial Polyhydroxyalkanoates; Smithers Rapra Publishing: Acron, OH, USA, 2010; p. 150. [Google Scholar]
- Wypych, G. PVC Formulary; ChemTech Publishing: Toronto, ON, Canada, 2009; p. 370. [Google Scholar] [CrossRef]
- Zweifel, H.; Maier, R.D.; Schiller, M. Plastics Additives Handbook; Hanser Publishing: Munich, Germany, 2009; p. 1248. [Google Scholar]
- Wagner, J.R. Handbook of Troubleshooting Plastics Processes; Scrivener Publishing LLC: Beverly, MA, USA, 2012; p. 502. [Google Scholar] [CrossRef]
- Krevelen, D.W. Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 2009; p. 1030. [Google Scholar]
- Paul, D.R.; Newman, S. Polymer Blends; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1978; p. 501. [Google Scholar]
- Wypych, G. PVC Degradation & Stabilization; ChemTech Publishing: Toronto, ON, Canada; New York, NY, USA, 2008; p. 500. [Google Scholar] [CrossRef]
- Kann, Y.; Padwa, A. PVC Modification with Biobased Poly (hydroxyalkanoates). J. Vinyl Addit. Technol. 2015, 21, 259–271. [Google Scholar] [CrossRef]
- Suresh, S.S.; Mohanty, S.; Nayak, S.K. Preparation of Poly (vinyl chloride)/Poly (methyl methacrylate) Recycled Blends: Effect of Varied Concentrations of PVC and PMMA in stability of PVC phase on the Recycled Blends. Mater. Today Proc. 2018, 5, 8899–8907. [Google Scholar] [CrossRef]
- Walsh, D.J.; Hoggins, J.S.; Maconnachie, A. Polymer Blends and Mixtures; Martinus Nijhoff Publishers: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, UK, 1985; p. 469. [Google Scholar]
- Zhang, G.; Zhang, J.; Wang, S.; Shen, D. Miscibility and Phase Structure of Binary Blends of Polylactide and Poly (methyl methacrylate). J. Polym. Sci. Part B Polym. Phys. 2003, 41, 23–30. [Google Scholar] [CrossRef]
- Fillot, L.-A.; Hajji, P.; Gauthier, C.; Masenelli-Varlot, K. U-PVC Gelation Level Assessment, Part 1: Comparison of Different Techniques. J. Vinyl Addit. Technol. 2006, 12, 98–107. [Google Scholar] [CrossRef]
- Fillot, L.A.; Fillot, P.; Gauthier, C. U-PVC Gelation Level Assessment, Part 2: Optimization of the different scanning calorimetry technique. J. Vinyl Addit. Technol. 2006, 12, 108–114. [Google Scholar] [CrossRef]
- Marshall, R.A. Effect of crystallinity on PVC physical properties. J. Vinyl Addit. Technol. 1994, 16, 35–38. [Google Scholar] [CrossRef]
Properties | PVC | PHB |
---|---|---|
Density, g/cm3 | 1.37–1.43; 1.53 (crystalline material), 1.373 (amorphous material) | 1.17–1.25; 1.262 (crystalline material), 1.177 (amorphous material) |
Proportion of crystals, % | 4–10 | 30–80 |
Cell type (lattice) | orthorhombic | orthorhombic |
Freezing point, °C | 82–87 | −4–2.5 |
Melting point, °C | 103–230 | 166–185 |
Sample | PVC, % | PHB, % | Stabilizer, % | Internal Lubricant, % | External Lubricant, % |
---|---|---|---|---|---|
PVC/PHB0 | 98.4 | 0 | 1.0 | 0.5 | 0.1 |
PVC/PHB10 | 88.4 | 10 | 1.0 | 0.5 | 0.1 |
PVC/PHB20 | 78.4 | 20 | 1.0 | 0.5 | 0.1 |
PVC/PHB30 | 68.4 | 30 | 1.0 | 0.5 | 0.1 |
Optical Characteristics | PVC/PHB0 | PVC/PHB10 | PVC/PHB20 | PVC/PHB30 |
---|---|---|---|---|
Turbidity, % | 46.6 | 24.7 | 3.5 | 4.8 |
Gloss (geometry 60°) | 12.1 | 39.5 | 108.4 | 102.1 |
Color: | ||||
L | 86.78 | 88.74 | 89.89 | 88.74 |
a | 0.49 | 0.42 | 0.33 | 0.35 |
b | 0.12 | 0.20 | 0.77 | 1.91 |
Sample | Temperature Value for Composite Weight Loss (°C) | |||
---|---|---|---|---|
1% | 5% | 10% | 50% | |
PVC/PHB0 | 254.20 | 279.48 | 289.70 | 323.15 |
PVC/PHB10 | 252.63 | 272.25 | 283.38 | 316.53 |
PVC/PHB20 | 252.23 | 267.22 | 274.91 | 301.66 |
PVC/PHB30 | 253.04 | 266.81 | 273.44 | 301.10 |
Sample | Tg, °C | HA, J/g | HB, J/g | G, % |
---|---|---|---|---|
PVC/PHB0 | 78.7 | 0.9961 | 2.149 | 31.67 |
PVC/PHB10 | 64.1 | 1.1160 | 1.835 | 37.81 |
PVC/PHB20 | 32.5 | 0.8683 | 1.218 | 41.62 |
PVC/PHB30 | 24.6 | 0.8845 | 1.181 | 42.82 |
Sample | Softening Point, °C | Flow Temperature, °C |
---|---|---|
PVC/PHB0 | 75.7 | 145.2 |
PVC/PHB10 | 65.7 | 136.6 |
PVC/PHB20 | 42.8 | 119.7 |
PVC/PHB30 | 40.1 | 112.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belukhichev, E.V.; Sitnikova, V.E.; Samuylova, E.O.; Uspenskaya, M.V.; Martynova, D.M. Films Based on a Blend of PVC with Copolymer of 3-Hydroxybutyrate with 3-Hydroxyhexanoate. Polymers 2020, 12, 270. https://doi.org/10.3390/polym12020270
Belukhichev EV, Sitnikova VE, Samuylova EO, Uspenskaya MV, Martynova DM. Films Based on a Blend of PVC with Copolymer of 3-Hydroxybutyrate with 3-Hydroxyhexanoate. Polymers. 2020; 12(2):270. https://doi.org/10.3390/polym12020270
Chicago/Turabian StyleBelukhichev, Evgeniy V., Vera E. Sitnikova, Evgenia O. Samuylova, Mayya V. Uspenskaya, and Daria M. Martynova. 2020. "Films Based on a Blend of PVC with Copolymer of 3-Hydroxybutyrate with 3-Hydroxyhexanoate" Polymers 12, no. 2: 270. https://doi.org/10.3390/polym12020270
APA StyleBelukhichev, E. V., Sitnikova, V. E., Samuylova, E. O., Uspenskaya, M. V., & Martynova, D. M. (2020). Films Based on a Blend of PVC with Copolymer of 3-Hydroxybutyrate with 3-Hydroxyhexanoate. Polymers, 12(2), 270. https://doi.org/10.3390/polym12020270