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Abstract: Polymeric packaging materials are one of the factors of environmental pollution.
Reducing the environmental burden is possible by increasing the environmental friendliness of
packaging materials. In this work, we study polymer films based on polyvinyl chloride (PVC) with a
copolymer of 3-hydroxybutyrate with 3-hydroxyhexanoate P (3-GB) (3-GG) with different component
ratios. The process of processing blends in the process of obtaining a packaging film is considered.
The optical characteristics of the obtained films are determined. Thermal analysis of the obtained
films was carried out using the differential scanning calorimetry (DSC), TGA, and thermomechanical
analysis (TMA) methods. The degree of gelling of the resulting mixture was determined. It is shown
that PHB has miscibility with PVC.
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1. Introduction

Over the past fifteen years, the share of polymeric materials in the production of packaging for
food, pharmaceuticals and consumer goods has grown from 17% up to 32%. It is worth noting that
this upward trend in using the polymer materials in packaging is still positive, projected to reach 40%
by 2025.

The main polymers for packaging are polyethylene (PE), polypropylene (PP), polyvinyl chloride
(PVC), polystyrene (PS), and polyethylene terephthalate (PET). These materials have high barrier
properties, transparency, strength, and inertness with respect to packaged products. Polymer materials,
replacing paper and cardboard packaging, allowed us to increase the shelf life and the radius
of transportation of most food and pharmaceutical products [1]. Polyethylene, polypropylene,
and polyvinyl chloride represent about 60% of total plastic volume for household goods, medical
equipment, leisure products, and other major applications [2].

However, in contrast to all the positive qualities of polymer packaging, the problem of recycling
polymer waste arose. Currently, each person consumes approximately 0.3 kg of plastic per day.
According to the United Nations Environment Agency, about 300 million tons of plastic are produced
annually in the world [3], half of which are disposable items, mainly food packaging. Only 14% of this
colossal amount is collected for re-processing, and only 9% is actually re-processed; 12% is burned
with the release of toxic substances. The remaining almost 80% goes to landfill or, even worse, illegally
dumped into the oceans [4]. According to the latest estimates, about 13 million tons of plastic waste
falls into the World Ocean.
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Currently, there are many research projects related to the production of biodegradable materials
for the production of polymer packaging. At the moment, a rather extensive class of biodegradable
polyesters has been developed, which include such polymers as polylactic acid, polycaprolactone,
polybutylene succinate, polybutylene adipate, polyhydroxybutyrate, and its copolymers [5,6].

Despite the large number of biodegradable polymers developed, only polylactic acid and its
blends [7,8] are widely used in the production of packaging materials. In recent articles on polymer
packaging there are references to biodegradable polyethylene furanoate as a new material for the
production of water bottles [9]. The widespread use of biodegradable materials in packaging production
is halted by their low manufacturability and high price compared to base polymers.

For example, polyhydroxyalkanoates (PHAs) synthesized using Alcaligenes eutrophus bacteria cost
about $16 per kilogram, which is 18 times more expensive than polypropylene. When the polymer is
synthesized by Escherichia coli, the price drops down to $4 per kilogram, which is comparable to the prices
of other biodegradable polymers [10], but still remains higher than the price of large-capacity polymers.

Polymer blending is a convenient route for the development of new polymeric materials, which
combine the excellent properties of more than one existing polymer. This strategy is usually cheaper
and less time-consuming than the development of new monomers and/or new polymerization routes,
as the basis for entirely new polymeric materials [11].

A promising way to speed up the process of introducing biopolymers into the polymer packaging
industry is to develop special blends of base and biodegradable polymers. This approach will allow
us to obtain materials with competitive cost and more stable manufacturability of the process of
their processing.

Polyvinyl chloride (PVC) is one of the most commonly used materials in the production of food
packaging, it has good technical properties and high polarity, which ensures its high compatibility with
a wide range of polymers. This polymer consists of 57% of chlorine, which the reserves are considered
almost unlimited, and only by 42% of the fossil hydrocarbons [12], which significantly reduces the
carbon footprint in its production, in contrast to other large-capacity polymers used in packaging [13].

Polyhydroxybutyrate (PHB) is an intracellular polyester belonging to the family of
polyhydroxyalkanoates (PHA), which can be used as an alternative to petroleum-based plastics, since
its structural properties are similar to polypropylene, and it has advantages such as biodegradability,
biocompatibility, and the possibility of production from renewable carbon sources [14,15].

Poly 3-hydroxybutyrate (3HB) with 3-hydroxyhexanoate (3HH) (3HB-co-3HHx) possesses
improved mechanical property and processability compared to P (3HB) and P (3HB-co-3HV).
Co-polymerization of P (3HB) with the 3HHx monomer unit, which has a longer alkyl side chain
avoids isodimorphism as the 3HB and 3HHx monomer units could not fit into the crystalline lattices
of each other. As the 3HHx molar fraction was increased from 0 to 25 mol%, the crystallinity of P
(3HB-co-3HHx) decreased from 60% to 18% [16].

The properties of these biological polymers are affected by the same fundamental principles
as those of fossil-fuel derived polyolefins, with a broad range of compositions available based on
the incorporation of different monomers into the PHA polymer structure, and with this broad range
tailoring subsequent properties [17].

This article describes the study polymer film on the base blend of polyvinyl chloride with a
copolymer of polyhydroxybutyrate and polyhydroxyhexanoate.

2. Materials and Methods

2.1. Materials

The following materials were used:

• PVC suspension, Kf = 58 (Shintech Inc., Houston, TX, USA);
• Organotin thermostabilizer based on dioctyltin bis (2-ethylhexyl thioglycolate) (Galata Chemicals,

Southbury, CT, USA);
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• Glycerol ester as an internal lubricant (Emery Oleochemicals, Telok Panglima Garang, Malaysia);
• Oxidized polyethylene wax as an external lubricant (Honeywell, Charlotte, NC, USA);
• A copolymer of 3HB with 3HH, the number average molecular weight of 500,000–600,000 daltons,

polydispersity 2.3, the ratio of 3HB/3HH = 95/5 (Kaneka, Takasago, Japan).

All components used in this study was supplied Klöckner Pentaplast Rus Ldt (Saint Petersburg,
Russian Federation). All reagents were used as is without further purification.

The basic characteristics of the polymers used are given in Table 1.

Table 1. The basic characteristics of the tested polymers [18,19].

Properties PVC PHB

Density, g/cm3
1.37–1.43;

1.53 (crystalline material),
1.373 (amorphous material)

1.17–1.25;
1.262 (crystalline material),
1.177 (amorphous material)

Proportion of crystals, % 4–10 30–80
Cell type (lattice) orthorhombic orthorhombic

Freezing point, ◦C 82–87 −4–2.5
Melting point, ◦C 103–230 166–185

2.2. Preparation of Composition

Five blends were prepared, designated as: PVC/PHB0, PVC/PHB10, PVC/PHB20, and PVC/PHB30,
with different ratios of PVC to PHB. The composition of the blends is shown in Table 2.

Table 2. Tested polymer compositions [20].

Sample PVC, % PHB, % Stabilizer, % Internal Lubricant, % External Lubricant, %

PVC/PHB0 98.4 0 1.0 0.5 0.1
PVC/PHB10 88.4 10 1.0 0.5 0.1
PVC/PHB20 78.4 20 1.0 0.5 0.1
PVC/PHB30 68.4 30 1.0 0.5 0.1

All blends were mixed in a high-speed HENSCHEL mixer (Kassel, Germany) at a temperature
of 80 ◦C. Plasticization of the material was performed in a BUSS single-screw oscillating extruder
(Pratteln, Switzerland) at a temperature of 180 ◦C and a rotation speed of 140 rpm. Films with a
thickness of 500 µm (±5 µm) were made from the obtained melt by the roller method.

2.3. Methods

2.3.1. Turbidity Determination

Turbidity was determined on a turbidity meter Diffusion Systems Ltd. M57 Spherical Hazemeter
(BYK Gardner, Geretsried, Germany) by measuring the amount of light scattered as it passes through
a film with a resolution of 0.1% according to ASTM D1003-13 Standard Test Method for Haze and
Luminous Transmittance of Transparent Plastics hazemeters. For this, a sample with a minimum size
of 25.4 mm was placed in a light-tight compartment for samples with 0 degrees illumination with
diffuse viewing.

2.3.2. Color Determination

The color parameters of the film samples are presented in the CIELab color space (also known
as CIE L*a*b* or sometimes abbreviated as simply “Lab” color space) and determined using a BYK
Gardner spectrophotometer (Geretsried, Germany).
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Yellowness index (YI) per ASTM Method D1925 is calculated as follows:

YI D1925 =
100(1.274976795X − 1.058398178Z)

Y
(1)

Under C/2◦ conditions for all instruments except UltraScan XE.
Transformation of L, a, b (CIELab) data to X, Y, Z (CIE XYZ tristimulus) is most easily expressed

using the inverse of the function f above:

X = Xn f−1
(L∗ + 16

116
+

a∗

500

)
Y = Yn f−1

(L∗ + 16
116

)
Z = Zn f−1

(
L∗ + 16

116
−

b∗

200

)
(2)

where

f f−1(t) =

 t3 i f t > δ
3δ2

(
t− 4

29

)
otherwise

(3)

where δ = 6/29.

2.3.3. Gloss

The surface reflectance (gloss) of the films was determined using BYK-Gardner (Geretsried,
Germany) SC-4510 Gloss Meter, High Gloss, 20◦ (ASTM D523, D2457). A gloss meter is an instrument
that is used to measure specular reflection gloss of a surface. Gloss is determined by projecting a beam
of light at a fixed intensity and angle onto a surface and measuring the amount of reflected light at an
equal but opposite angle.

2.3.4. Thermal Stability

Thermal stability was determined by determining the residual efficiency of the thermostabilizer.
The method implies thermostating of samples of polymer films at a given temperature and loading
speed. A sample film of 240 mm long and 10 mm wide is gradually introduced into the heating zone.
As a result, we get a sample that has undergone thermal degradation under controlled conditions.
The test results are presented in the form of a graph of the yellowing index (YI, %).

Schematic diagram of the installation for research and a schematic image of the sample are shown
at Figure 1.
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Figure 1. Schematic diagram of the installation for measuring the residual content of the thermal
stabilizer: 1—thermostat, 2—sample film, 3—substrate for loading the sample, 4—engine; below, a
schematic representation of the sample after the test; T1—test temperature; V1—sample loading speed;
t1, tn is the residence time of the sample in the heating zone.
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2.3.5. Differential Scanning Calorimetry, DSC

The thermal properties of the obtained samples were studied on a differential scanning calorimetry
(DSC) 204 F1 Phoenix differential scanning calorimeter (Netzsch, Selb, Germany) operating at a heating
rate of 10 ◦C/min in the range from −30 to 250 ◦C. After the equilibration phase at 25 ◦C, the samples
were first heated to 175 ◦C, then cooled to −30 ◦C, and then again heated to a temperature of 250 ◦C.
Nitrogen was used as purge gas at a flow rate of 40 mL/min. The weight of the film samples used for
DSC measurements ranged from 5.5 to 8.5 mg. Samples were placed in aluminum crucibles with a
punched cap. The melting temperature (Tm) and apparent melting enthalpy (Hf) of each sample were
determined from the maximum and the area of the endothermic melting peaks during the first scan,
respectively. The data of the second heating curve were analyzed to determine the glass transition
temperature Tg.

2.3.6. Thermomechanical Analysis, TMA

Thermomechanical analysis (TMA) experiments were carried out on a TMA 402 F1 Hyperion
(Netzsch, Selb, Germany) operating in the penetration mode. Samples were heated from 25 to 175 ◦C
with a heating rate of 5 K/min. Nitrogen was used as purge gas at a flow rate of 40 mL/min. The glass
transition temperature was determined by changing the slope of the obtained curves.

2.3.7. Thermal Gravimetric Analysis, TGA

Thermogravimetric analysis was used to study the thermal stability of the samples. All samples
were measured using a Libra 209 F1 thermogravimetric analyzer (Netzsch, Selb, Germany) with a scan
rate of 10 ◦C/min in a nitrogen atmosphere in the temperature range of 25–900 ◦C.

3. Results

The dependence of the extruder torque during the processing of blends PVC/PHB on the increase
in the proportion of PHB is shown on Figure 2. The graph shows that an increase in the proportion of
PHB in the blends leads to a decrease in the torque of the extruder. All blends containing PHB showed
the effect of accelerating the shear melting of PVC particles and greater melt elasticity, which shows
the effectiveness of PHB as a processing additive [21]. It should be noted that elastomers based on
nitrile butadiene rubber and ethylene vinyl acetate copolymer, which are solid polymer plasticizers,
have a similar effect on the processing of polyvinyl chloride [18]. When processing on the extruder,
significant fluctuations in the flow of the melt were not detected.
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Figure 2. The values of the rotation torque in the extruder in the processing of PVC/PHB blends. 
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With further processing on the rollers, increased adhesion to the metal surface of the shafts caused
by the presence of PHB was observed. The presence of such adhesion can also be a factor in accelerating
the process of melting the blend in the extruder.

The separating force of the melt in the gap in the presence of PHB decreases, which usually has a
positive effect on the calendaring process. Lower spacer pressure allows one to reduce the load on the
calendar equipment necessary for resistance to melt pressure [22] (roll bending and cross-axis), and to
obtain a film with smaller thickness differences across the width of the canvas.

The optical properties of the polymer blends used in the production of packaging materials
determine the range of products that can be obtained using these blends. Films having a high haze and
a dull surface are most often not used for the production of packaging materials.

Table 3 shows the results of measuring the optical characteristics of the films obtained from
PVC/PHB blends with different ratios of these polymers. It was noted that an increase in the PHB
content in the blend leads to less light scattering in the visible range (400–700 nm) passing through
the thickness of the obtained films. The low optical haze (high transparency) of the samples can be
associated with good compatibility of these polymers [23], since films from blends of incompatible
polymers are characterized by high turbidity due to differences in polymers refractive indices [24].

Table 3. Optical characteristics of films obtained from PVC/PHB blends.

Optical Characteristics PVC/PHB0 PVC/PHB10 PVC/PHB20 PVC/PHB30

Turbidity, % 46.6 24.7 3.5 4.8
Gloss (geometry 60◦) 12.1 39.5 108.4 102.1

Color:
L 86.78 88.74 89.89 88.74
a 0.49 0.42 0.33 0.35
b 0.12 0.20 0.77 1.91

High values of gloss on the surface of the films obtained from blends of PVC/PHB20 and
PVC/PHB30 indicate uniform mixing of the components of the blend and a low number of surface
defects, which in turn can also indicate the compatibility of the tested polymers in the melt.

The color of the obtained samples varied slightly. An increase in the values of channel L for
transparent films was most often associated with a decrease in turbidity. An increase in the value of
channel b during the study of PVC films was most often associated with the formation of chromophore
groups during polymer degradation, but in this case, in the absence of significant changes in channel a,
it might relate to an increase in the fraction of PHB in the system, which has its own yellow tint.

According to the results of the thermal stability test by determining the effectiveness of the residual
stabilizer, we could conclude that an increase in the proportion of PHB in the PVC-PHB system had
a positive effect on the duration of thermal stability of the obtained films. Test results are shown in
Figures 3 and 4.Polymers 2020, 12, 270 7 of 13 
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This positive effect was most likely due to a simple decrease in the fraction of easily degrading
polyvinyl chloride in the PVC-PHB system, since it is difficult to assume that high molecular weight
polyhydroxybutyrate can have a stabilizing effect.

However, a decrease in the melt viscosity upon introduction of PHB slowed down the processes
of thermo-mechanical destruction during processing by extrusion followed by calendaring, which
was reflected in the initial color values and partially affects the increase in the duration of the thermal
stability of the blend.

Determining the thermal stability of PVC is very important because of its thermal and shear
sensitivity during processing. This parameter provides valuable information about processing
conditions, including when PVC serves as a matrix of composites with natural fillers [25].

Usually, two stages of degradation are observed in PVC: the first stage is the removal of hydrogen
chloride along with some small volatile molecules of saturated and unsaturated aliphatic or aromatic
hydrocarbons. The second stage involves the formation and volatilization of intramolecular cyclization
products. In unfilled PVC, the first stage of decomposition proceeded at about 297 ◦C, the second,
about 464 ◦C (Figure 5).
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Polyhydroxybutyrate, as well as PVC, is sensitive to thermal decomposition (Figure 5a, curve 5).
It is known that at high temperatures (above 200 ◦C) PHB thermally degrades with the formation of
γ-butyrolactone (cyclic monomer). At higher decomposition temperatures, other acid molecules may
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form, such as oligomeric acid crotonates, which upon further degradation form low-molecular acids
(mainly crotonic and 3-butenes) [26].

Although the degradation of PVC and PVC/PHB films was consistent with similar trends, there
were differences in the shape of the TG curves, especially in the range 260–360 ◦C (Figure 5b). It was
especially clearly seen that the 50%-weight loss temperature shifted toward lower temperatures
with increasing concentration of PHB in the PVC/PHB films. The temperatures of 1%, 5%, 10%,
and 50%—weight loss of all PVC samples are shown in Table 4.

Table 4. Thermal stability of PVC/PHB blends.

Sample
Temperature Value for Composite Weight Loss (◦C)

1% 5% 10% 50%

PVC/PHB0 254.20 279.48 289.70 323.15
PVC/PHB10 252.63 272.25 283.38 316.53
PVC/PHB20 252.23 267.22 274.91 301.66
PVC/PHB30 253.04 266.81 273.44 301.10

These data show that temperatures with losses of 1%, 5%, 10%, and 50% associated with
progressive degradation are lower for composites containing polyhydroxybutyrate than for unfilled
PVC. Modification of PVC using a biopolymer led to a decrease in the thermal stability of the polymer,
which decreased significantly with increasing PHB content in the PVC matrix.

Important properties regarding the thermal stability of PVC/PGB films were obtained by differential
scanning calorimetry (DSC). Figure 6 shows the DSC curves for the second heating of the PVC/PHB
films, since after the first heating the curves show an endothermic peak directly above the Tg of the
sample, which corresponds to the enthalpy relaxation experienced by the PVC in the film.
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various compositions.

Glass transition temperatures of 78.7 and 0.1 ◦C were characteristic of pure PVC and PHB,
respectively. On the DSC thermograms obtained for all PVC/PHB films, the glass transition temperatures
characteristic of the pure components was absent; instead, there was a single glass transition that
depended on the blend composition. The formation of a single-phase system with one Tg serves as
an indicator of the miscibility of components in blends [27,28]. However, a film from blend of PVC
with 10% PHB has a wide transition from a glassy state, which indicates some chemical heterogeneity.
In addition, on the DSC curves of PVC/PHB films, there were no melting peaks characteristic of
semi-crystalline PHB, which were at temperatures of 126 and 140 ◦C.

DSC analysis confirmed the formation of a single Tg-transformation, which shifted in the expected
direction. The glass transition temperatures in PVC/PHB films (Figure 7) show a negative deviation
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from the calculated Fox addition law (4). A negative deviation is an indicator of the miscibility of the
components in the blend [29]:

1/Tg,b = w1/Tg1 + w2/Tg2 (4)

where Tg,b is the glass transition temperature of the films from blend of polymers, Tg1 and Tg2 are the
glass transition temperatures of pure polymers that make up the blend, w1 and w2 are the specific
gravity in the blend of the first and second components, respectively.
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PGB, which had good miscibility with PVC and a low glass transition temperature, was expected
to act as a high molecular weight plasticizer, protecting the strong dipole binding forces responsible
for the stiffness of the PVC chains and providing more free volume, which in general would lead to
increased stability, mobility, and flexibility of PVC chains.

An important parameter in the processing of PVC-containing blends is the gelation degree (G, %),
which characterizes the final morphology of the system depending on the processing conditions [30].
After the polymerization stage, PVC exhibited a complex morphology consisting of a hierarchy of
domains of different sizes. The smallest domains (microdomains) contained ordered or crystalline
regions, which accounted for approximately no more than 10% of the weight of PVC. PVC was
characterized by DSC curves, which had a wide endothermic peak in the range from 140 to 230 ◦C.

At standard PVC processing temperatures (between 185 and 205 ◦C), melting remains partial.
This molten crystalline portion will subsequently recrystallize during cooling, and newly created
ordered objects are referred to as secondary crystallites. Thus, recycled PVC contains two types
of crystallites, and the proportion of primary and secondary depends on processing and, mainly,
on heating conditions [30].

The gelation process also affects the microstructure of PVC on a wider scale: during processing,
the hierarchical structure of PVC is violated to a certain extent depending on the conditions of shear
and heating.

Using the DSC technique for PVC compositions, two endothermic peaks are identified. Peak B
(high temperature) is identified as melting of primary crystallites, and peak A (low temperature) is
identified as melting of secondary crystallites. Using the following relation (5), including A and B
enthalpies, it is possible to calculate the gelation level of PVC [31]:

G = HA/(HA + HB) ∗ 100 (5)

The gelation of PVC plays a significant role in strength, elastic modulus, tensile strength,
and elongation, among other properties [32].
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The calculation of the area under these two peaks was carried out for DSC curves of the second
heating (Table 5). Figure 6 also shows that the area under the peak at a temperature of 188.4 ◦C (peak B,
primary crystallites) decreases with an increase in the proportion of PHB in the blend, which indicates
a decrease in the crystalline phase of PVC in the studied films.

Table 5. The level of gelation for PVC/PHB films.

Sample Tg, ◦C HA, J/g HB, J/g G, %

PVC/PHB0 78.7 0.9961 2.149 31.67
PVC/PHB10 64.1 1.1160 1.835 37.81
PVC/PHB20 32.5 0.8683 1.218 41.62
PVC/PHB30 24.6 0.8845 1.181 42.82

The study results show that the introduction of PHB into the system had a significant effect on the
level of gelation, which positively affects the optical properties of the resulting films.

Thermomechanical analysis was carried out in order to track the dependence of the polymer
deformation on temperature with its continuous increase. The data obtained during thermomechanical
analysis of polymer films allow one to specify the temperature regimes of processing (processing
window), restrictions for post-processing of polymer products (embossing, coating, grinding, etc.)
and indicate indirectly the compatibility of polymers in the blend. The data obtained during
thermomechanical analysis are shown in Figure 8 and Table 6.
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Figure 8. Thermomechanical analysis (TMA) curves of PVC/PHB blends with different PHB contents.

Table 6. Thermomechanical analysis results for tested PVC/PHB blends.

Sample Softening Point, ◦C Flow Temperature, ◦C

PVC/PHB0 75.7 145.2
PVC/PHB10 65.7 136.6
PVC/PHB20 42.8 119.7
PVC/PHB30 40.1 112.2

It thus could be concluded that with an increase in the proportion of PHB in the PVC/PHB films,
the softening temperature and yield temperature uniformly deviated to a range of lower values, which
also characterizes the compatibility of PVC with PHB in the melt.

The thermomechanical curve became smoother, which indicates the expansion of the window for
processing blends with a high proportion of PHB content and so the possibility of plasticizing these
blends at lower temperatures, which, in turn, would positively affect the thermal and thermomechanical
stability of the material, and reduce the cost of heating energy system.
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4. Discussion

Summing up the results of study performed for the PVC/PHB blends, we concluded that this
composition allowed one to get hard films by calendaring for further thermoforming. Processing the
PVC/PHB blend may take place at lower temperatures, which not only reduces the energy consumption
for heating the equipment, but also allows us to reduce the cooling time of the material, which will
allow us to process this blend with higher productivity.

The resulting films had high optical characteristics (transparency, gloss, and initial color), most
often necessary to ensure visual quality control of packaged food and pharmaceutical products by the
end user.

One of the most important parameters of this blend is the increase of the environmental friendliness
of its products [26]. This is due to the fact that it is possible to replace part of the environmentally
harmful PVC in the final product (for example, in a packaging film) with polyhydroxybutyrate without
deterioration of such parameters as turbidity, color, and gloss. In this case, the processing temperature
of the mixture also decreased. This was due to the fact that, unlike PVC, the raw material for the
synthesis of PHB is biomass (lignocellulose, starch, sucrose, vegetable oils, etc.), i.e., a renewable source
implying the absorption of carbon dioxide, and therefore an increase in the proportion of PHB in the
PVC/PHB system would reduce the carbon footprint of the final packaging material.
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