A Molecular Dynamics Simulation Based Investigation of the Proton Conductivity of Anhydrous Pyrazole Doped Poly(Vinylphosphonic Acid) Composite System
Abstract
:1. Introduction
2. Computation Methods
2.1. Force Field
2.2. Molecular Dynamics
3. Results and Discussion
3.1. Dynamics Properties of Protons
3.2. Pair Correlation Function and Coordination Study
3.3. Analysis of Proton Trajectories
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Asensio, J.A.; Sánchez, E.M.; Gómez-Romero, P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 2010, 39, 3210. [Google Scholar] [CrossRef] [PubMed]
- Sone, Y.; Ekdunge, P.; Simonsson, D. Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method. J. Electrochem. Soc. 1996, 143, 1254. [Google Scholar] [CrossRef]
- Sumner, J.J.; Creager, S.E.; Ma, J.J.; Desmarteau, D.D. Proton Conductivity in Nafion 117 and in a Novel Bis [(perfluoroalkyl)] sulfonylimide Ionomer Membrane. J. Electrochem. Soc. 1998, 145, 107. [Google Scholar] [CrossRef]
- Kreuer, K.D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology. Chem. Rev. 2004, 104, 4637–4678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraytsberg, A.; Ein-Eli, Y. Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy Fuels 2014, 28, 7303–7330. [Google Scholar] [CrossRef]
- Kusoglu, A.; Adam, Z.W. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- Malinauskas, A.; Kuzmarskyt, J.; Meskys, R.; Ramanavicius, A. Bioelectrochemical sensor based on PQQ-dependent glucose dehydrogenase. Sens. Actuators B Chem. 2004, 100, 387–394. [Google Scholar] [CrossRef]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Kawahara, M.; Morita, J.; Rikukawa, M.; Sanui, K.; Ogata, N. Synthesis and proton conductivity of thermally stable polymer electrolyte: Poly(benzimidazole) complexes with strong acid molecules. Electrochim. Acta 2000, 45, 1395–1398. [Google Scholar] [CrossRef]
- Yamada, M.; Honma, I. Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material. Polymer (Guildf.) 2005, 46, 2986–2992. [Google Scholar] [CrossRef]
- Narayanan, S.R.; Yen, S.P.; Liu, L.; Greenbaum, S.G. Anhydrous Proton-Conducting Polymeric Electrolytes for Fuel Cells. J. Phys. Chem. B 2006, 110, 3942–3948. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.R.; Vinothkannan, M.; Song, M.H.; Lee, J.; Lee, H.; Yoo, D.J. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos. Part B. Eng. 2020, 188, 1078901–1078913. [Google Scholar] [CrossRef]
- Kima, A.R.; Park, C.J.; Vinothkannan, M.; Yoo, D.J. Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells. Compos. Part B 2018, 155, 278–281. [Google Scholar] [CrossRef]
- Lee, K.H.; Chu, J.Y.; Kim, A.R.; Yoo, D.J. Facile Fabrication and Characterization of Improved Proton Conducting Sulfonated Poly(Arylene Biphenylether Sulfone) Blocks Containing Fluorinated Hydrophobic Units for Proton Exchange Membrane Fuel Cell Applications. Polymers 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B.G.; Ingram, A.; Bujalski, W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review. J. Power Sources 2013, 231, 264–278. [Google Scholar] [CrossRef]
- Bozkurt, A.; Meyer, W.H. Proton-conducting poly(vinylpyrrolidon)-polyphosphoric acid blends. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 1987–1994. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, X.; Xiang, Y.; Lu, S.; Jiang, S.P. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers. J. Mater. Chem. A 2015, 3, 148–155. [Google Scholar] [CrossRef]
- Padmavathi, R.; Sangeetha, D. Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells. Ionics (Kiel) 2013, 19, 1423–1436. [Google Scholar] [CrossRef]
- De Almeida, N.; Goward, G. Imidazolium Trifluoromethanesulfonate sPEEK Composites for Anhydrous High Temperature Proton Exchange Membrane Fuel Cells. ECS Trans. 2014, 64, 425–432. [Google Scholar] [CrossRef]
- Bouchet, R. Proton conduction in acid doped polybenzimidazole. Solid State Ion. 1999, 118, 287–299. [Google Scholar] [CrossRef]
- He, R.; Li, Q.; Xiao, G.; Bjerrum, N.J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J. Membr. Sci. 2003, 226, 169–184. [Google Scholar] [CrossRef]
- Li, Q.F.; He, R.H.; Jensen, J.O.; Bjerrum, N.J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 2003, 15, 4896–4915. [Google Scholar] [CrossRef] [Green Version]
- Trigg, E.B.; Gaines, T.W.; Maréchal, M.; Moed, D.E.; Rannou, P.; Wagener, K.B.; Stevens, M.J.; Winey, K.I. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 2018, 17, 725–731. [Google Scholar] [CrossRef]
- Qingfeng, L.; Hjuler, H.A.; Bjerrum, N.J. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 2001, 31, 773–779. [Google Scholar] [CrossRef]
- Li, Q.; He, R.; Jensen, J.O.; Bjerrum, N.J. PBI-Based Polymer Membranes for High Temperature Fuel Cells—Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells 2004, 4, 147–159. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton conductivity: Materials and applications. Chem. Mater. 1996, 8, 610–641. [Google Scholar] [CrossRef]
- Hogarth, W.H.J.; da Costa, J.C.D.; Lu, G.Q. Solid acid membranes for high temperature (> 140 °C) proton exchange membrane fuel cells. J. Power Sources 2005, 142, 223–237. [Google Scholar] [CrossRef]
- Kreuer, K.D.; Fuchs, A.; Ise, M.; Spaeth, M.; Maier, J. Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim. Acta 1998, 43, 1281–1288. [Google Scholar] [CrossRef]
- Erkartal, M.; Usta, H.; Citir, M.; Sen, U. Anhydrous proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/1,2,4-triazole composite membrane. Int. J. Hydrogen Energy 2016, 41, 11321–11330. [Google Scholar] [CrossRef]
- Yan, L.; Xie, L. Molecular Dynamics Simulations of Proton Transport in Proton Exchange Membranes Based on Acid—Base Complexes. In Molecular Interaction; Intech Open: London, UK, 2012; pp. 335–360. [Google Scholar] [CrossRef] [Green Version]
- Greish, Y.E.; Brown, P.W. Chemically formed HAp-Ca poly(vinyl phosphonate) composites. Biomaterials 2001, 22, 807–816. [Google Scholar] [CrossRef]
- Greish, Y.E.; Brown, P.W. Formation and Properties of Hydroxyapatite—Calcium Poly (vinyl phosphonate) Composites. J. Am. Ceram. Soc. 2002, 85, 1738–1744. [Google Scholar] [CrossRef]
- Bozkurt, A.; Meyer, W.H.; Gutmann, J.; Wegner, G. Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ion. 2003, 164, 169–176. [Google Scholar] [CrossRef]
- Bozkurt, A.; Meyer, W.H. Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ion. 2001, 138, 259–265. [Google Scholar] [CrossRef]
- Mayo, S.; Olafson, B.; Goddard, W. DREIDING: A generic force field for molecular simulations. J. Phys. 1990, 101, 8897–8909. [Google Scholar] [CrossRef]
- Devanathan, R.; Venkatnathan, A.; Dupuis, M. Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. J. Phys. Chem. B 2007, 111, 8069–8079. [Google Scholar] [CrossRef]
- Choe, Y.K.; Tsuchida, E.; Ikeshoji, T.; Yamakawa, S.; Hyodo, S. Nature of proton dynamics in a polymer electrolyte membrane, nafion: A first-principles molecular dynamics study. Phys. Chem. Chem. Phys. 2009, 11, 3892. [Google Scholar] [CrossRef]
- Nymand, T.M.; Linse, P. Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. J. Chem. Phys. 2000, 112, 6152–6160. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hossain, O.; Chaggar, J.; Steinberger-Wilckens, R.; El-Kharouf, A. GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. Int. J. Hydrogen Energy 2020, 45, 5526–5534. [Google Scholar] [CrossRef]
- Chang Chien, C.T.; Chuang, P.H.; Chen, C.L. Molecular dynamics simulation to investigate anhydrous phosphoric acid-doped polybenzimidazole. Mol. Simul. 2016, 42, 1444–1451. [Google Scholar] [CrossRef]
- Ennari, J. Modelling of transport properties and state of water of polyelectrolytes containing various amounts of water. Polymer 2008, 49, 2373–2380. [Google Scholar] [CrossRef]
Correlation Pair | Position of Highest Peak | Coordination Number |
---|---|---|
O1–H1 | 1.73 Å | 2.74 |
N1–H1 | 2.15 Å | 0.39 |
N2–H1 | 2.01 Å | 0.29 |
O1–H2 | 2.01 Å | 0.09 |
N1–H2 | 2.67 Å | 0.64 |
N2–H2 | 2.23 Å | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-R.; Chien, C.-T.C.; Chen, C.-L. A Molecular Dynamics Simulation Based Investigation of the Proton Conductivity of Anhydrous Pyrazole Doped Poly(Vinylphosphonic Acid) Composite System. Polymers 2020, 12, 2906. https://doi.org/10.3390/polym12122906
Huang Y-R, Chien C-TC, Chen C-L. A Molecular Dynamics Simulation Based Investigation of the Proton Conductivity of Anhydrous Pyrazole Doped Poly(Vinylphosphonic Acid) Composite System. Polymers. 2020; 12(12):2906. https://doi.org/10.3390/polym12122906
Chicago/Turabian StyleHuang, Yu-Ren, Chung-Te Chang Chien, and Cheng-Lung Chen. 2020. "A Molecular Dynamics Simulation Based Investigation of the Proton Conductivity of Anhydrous Pyrazole Doped Poly(Vinylphosphonic Acid) Composite System" Polymers 12, no. 12: 2906. https://doi.org/10.3390/polym12122906
APA StyleHuang, Y.-R., Chien, C.-T. C., & Chen, C.-L. (2020). A Molecular Dynamics Simulation Based Investigation of the Proton Conductivity of Anhydrous Pyrazole Doped Poly(Vinylphosphonic Acid) Composite System. Polymers, 12(12), 2906. https://doi.org/10.3390/polym12122906