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Abstract: Sulfonated poly(arylene biphenylether sulfone)-poly(arylene ether) (SPABES-PAE) block
copolymers by controlling the molar ratio of SPABES and PAE oligomers were successfully
synthesized, and the performances of SPABES-PAE (1:2, 1:1, and 2:1) membranes were compared
with Nafion 212. The prepared membranes including fluorinated hydrophobic units were stable
against heat, nucleophile attack, and physio-chemical durability during the tests. Moreover,
the polymers exhibited better solubility in a variety of solvents. The chemical structure of
SPABES-PAEs was investigated by 1H nuclear magnetic resonance (1H NMR), Fourier transform
infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). The membrane of
SPABES-PAEs was fabricated by the solution casting method, and the membranes were very flexible
and transparent with a thickness of 70–90 µm. The morphology of the membranes was observed using
atomic force microscope and the ionic domain size was proved by small angle X-ray scattering (SAXS)
measurement. The incorporation of polymers including fluorinated units allowed the membranes
to provide unprecedented oxidative and dimensional stabilities, as verified from the results of ex
situ durability tests and water uptake capacity, respectively. By the collective efforts, we observed
an enhanced water retention capacity, reasonable dimensional stability and high proton conductivity,
and the peak power density of the SPABES-PAE (2:1) was 333.29 mW·cm−2 at 60 ◦C under 100%
relative humidity (RH).

Keywords: proton exchange membrane; fuel cell performance; small angle X-ray scattering

1. Introduction

Polymer electrolyte fuel cells (PEFCs) are attracting immense attention as alternative power
sources for portable and stationary electronics as they allow H2 and O2 gases to generate energy
with low/zero production of poisonous gases. Among the working components in proton exchange
membrane fuel cells (PEMFCs), the proton exchange membrane (PEM) is a pivotal module, which
selectively transfers the protons from the anode to the cathode. Commercial perfluorinated ionomers,
such as Nafion and Flemion, are being extensively exploited as PEMs because of their excellent
electrochemical properties, elevated proton conductivity and good mechanical modulus [1–4].
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However, the decrease of proton conductivity at high temperature under low humidity, high methanol
crossover and low glass transition temperature are the inevitable confines of perfluorosulfonic acid
(PFSA) membranes that complicate the practical PEMFC operation. Accordingly, wide research efforts
and activities in the fabrication of alternative PEMs are thriving.

Aromatic hydrocarbon polymers, such as sulfonated polyketones (SPKs) [5], sulfonated
polyimides (SPIs) [6], sulfonated poly(arylene sulfone)s (SPASs) [7,8], sulfonated poly(arylene ether
sulfone)s (SPAESs) [9] are highlighted for their exclusive attributes such as low cost, high mechanical
modulus resulting from their extended polymer chains, and flexible proton conductivity due to
their adjustable degree of sulfonation (DS). The direct sulfonation method has some advantage
such as avoiding cross-linking, other side reactions, and also providing good mechanical properties.
Recently, investigators have attempted to improve the performance of proton conductivity through
controlled morphology using directly sulfonated monomers rather than using a post sulfonation
method. Therefore, the exploitation of aforementioned polymers for PEM preparation is flourishing.
However, the polymeric membranes are susceptible to distortion due to volumetric changes caused by
the water drift in the membranes. Such type of distortion can lead to increased pressure between the
bipolar plates and membrane electrode assembly (MEA), resulting in the formation of crack, pinholes
and perforations in the membrane. On the other side, chemical degradation of polymeric chains caused
by the hydroxyl (·OH) and hydroperoxyl (·OOH) radical attacks in the cathode side, further exacerbate
the cracks in the membranes. Altogether, these issues drastically decline the overall performance
of PEMFC. It has been shown that incorporation of fluorinated segments into the polymer chains
is an ultimate strategy in improving the mechanical modulus, chemical stability, and fuel barrier
properties of PEMs, which enhance the membrane durability during PEMFC operation [10–12].

Among the methods designed to solve the drawbacks of aromatic hydrocarbon membranes, block
copolymers having controlled morphology and a similar ion exchange capacity (IEC) value showed
not only excellent mechanical behaviors but also high ionic conductivity when compared with the
random copolymer.

Numerous studies related to the characterization of block copolymers have continuously
improved the performance of electrolyte membranes applicable to PEM. Furthermore, the increase in
repeat units of hydrophilic segments in the polymer affects the IEC value and effectively governs the
aggregation of ion clusters. In another report, McGrath et al. [13] designed and synthesized multi-block
copolymers containing sulfonated and fluorinated segments. They reported that the membranes
have good thermomechanical stabilities and high ion conductivity in relation to commercial Nafion
membrane under low humidity condition. Although the synthesis of block copolymer with controlled
morphology has been found to be the most suitable strategy for producing a good performance of
a fuel cell, still it has drawbacks such as difficult in controlling the molecular weight and limited
application to commercialization.

Therefore, sulfonated bis[(4-chlorophenyl)sulfonyl]-biphenyl (BCPSBP) containing thiophene
moiety as a hydrophilic oligomer can form steric hindrance, minimize interactions with radicals,
and improve mechanical/thermal stabilities [14]. In addition, block copolymer containing hydrophobic
oligomer with perfluorinated structure and hydrophilic oligomer is deduced as a strategy for the
production of ideal PEM through lowering the volume change by water drift.

In line with these facts, the sulfonated poly(arylene biphenylether sulfone)-poly(arylene ether)
(SPABES-PAE) block copolymers in di- or tri-block structure were designed in order to improve
membrane properties, and these copolymers were investigated for their comparison. Initially,
sulfonated SPABES-PAE block copolymers were synthesized with SPABES oligomer as the hydrophilic
part and PAE oligomer as the hydrophobic part via direct polymerization reaction. The chemical
structure of prepared block copolymers was analyzed using 1H nuclear magnetic resonance
(1H NMR), Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography
(GPC). The properties of SPABES-PAE membranes were widely studied in terms of water uptake, ion
exchange capacity (IEC), thermal stability, oxidative stability, and proton conductivity.
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2. Experimental

2.1. Materials

4,4’-(hexafluoroisopropylidene)diphenol (6F-BPA) and decafluorobiphenyl (DFBP) were
received from Alfa Aesar. 4,4’-bis[(4-chlorophenyl)sulfonyl]-biphenyl (BCPSBP), anhydrous
N,N’-dimethylacetamide (DMAc), anhydrous toluene, and dimethyl sulfoxide-d6 (DMSO-d6) were
purchased from Sigma–Aldrich (Saint Louis, MI, USA). Others solvents were obtained from
commercial companies.

2.2. Synthesis of Polymers

2.2.1. Synthesis of Sulfonated Poly(Arylene Biphenylehter Sulfone), Poly(Arylene Ether),
and Poly(Arylene Biphenylether Sulfone)

We have prepared a di-sulfonated BCPSBP monomer (sBCPSBPms) in meta positions to the
sulfone groups, and the synthetic steps of sBCPSBPms was followed from a previously reported
paper [14,15]. The sulfonated poly(arylene ether biphenyl sulfone) (SPAEBS) was synthesized by direct
nucleophilic substitution polymerization using sBCPSBPms and 6F-BPA (Scheme S1a). In a typical
polymerization, sBCPSBPms (2.00 g, 2.60 mmol), 6F-BPA (1.31 g, 2.87 mmol), K2CO3 (1.19 g, 5.73 mmol),
30 mL of DMAc, and 15 mL of toluene were put together into 100 mL round-bottomed flask equipped
with a Dean–Stark trap under nitrogen gas. The solution was refluxed at 100 ◦C for 2 h, and then
the solution was heated at 160 ◦C for 4 h to remove toluene. The solution was increased to 170 ◦C
and kept for 24 h to complete the polymerization. The viscous solution was slowly poured into the
deionized (DI) water/methanol (v/v = 2/5) to precipitate solid powder. The precipitated powder
was washed with methanol several times, filtered, and dried at 70 ◦C for 24 h. 1H NMR (600 MHz,
DMSO-d6): 7.0–8.4 ppm; GPC (LiBr in dimethylformamide (DMF), refractive index (RI) detector) Mn

(number average molecular weight) = 20.9 kDa, Mw (weight average molecular weight) = 41.3 kDa,
polydispersity index (PDI) (Mw/Mn) = 2.0.

The fluorinated poly(arylene ether) (PAE) was prepared from 6F-BPA and DFBP (Scheme S1b)
as described below. A 100 mL round-bottomed flask equipped with condenser was charged with
6F-BPA (2.00 g, 5.95 mmol), DFBP (2.21 g, 6.50 mmol), K2CO3 (1.81 g, 1.31 mmol), and DMAc (25 mL)
under nitrogen gas. The mixture was stirred for 2 h at 110 ◦C and then the reaction temperature
was raised 145 ◦C. The polymerization reaction was maintained for 24 h. After the polymerization
reaction was maintained for 24 h, the mixture was cooled at room temperature (RT). The viscous
solution was directly poured into DI water/methanol (v/v = 2/1) to produce the polymer powder.
The polymer powder was collected by washing with methanol several times, filtered, and dried at 60 ◦C
for 12 h. 1H NMR (600 MHz, DMSO-d6): 7.0–8.4 ppm; GPC (LiBr in DMF, RI detector) Mn = 9.3 kDa,
Mw = 56.0 kDa, PDI (Mw/Mn) = 6.0.

The poly(arylene biphenyl ether sulfone) (PABES) oligomer was prepared using BCPSBP monomer
following a similar method as described above. 1H NMR (600 MHz, DMSO-d6): 7.0–8.4 ppm; GPC
(LiBr in DMF, RI detector) Mn = 15.8 kDa, Mw = 31.5 kDa, PDI (Mw/Mn) = 2.0.

2.2.2. Synthesis of Block Copolymers (PABES-PAE and SPABES-PAE)

The PABES-PAE block copolymer was synthesized by nucleophilic substitution reaction using
PABES and PAE to compare chemical properties with SPABES-PAE block copolymers, and the synthetic
step is shown in Scheme S2. The polymerization procedure of PABES-PAE is as follows. A 100 mL
round-bottomed flask equipped with Dean–Stark trap was charged with PABES oligomer (1.50 g,
3.00 mmol), PAE oligomer (1.10 g, 3.30 mmol), K2CO3 (1.10 g, 3.30 mmol), and DMAc/toluene
(30 mL/20 mL). The mixture was heated to 130 ◦C for 4 h to remove toluene and moisture.
After finishing the azeotrope, the mixture temperature was maintained at 170 ◦C for 48 h. After the
reaction time, the viscous solution was poured in co-solvent (methanol:DI water = 1:1) to collect
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the white powder. The produced powder was obtained by filtration, washed with methanol several
times, dried in oven at 80 ◦C for 24 h. 1H NMR (600 MHz, DMSO-d6): 7.0–8.4 ppm. 1H NMR
(600 MHz, DMSO-d6): 7.0–8.4 ppm; GPC (LiBr in DMF, RI detector) Mn = 14.8 kDa, Mw = 122.8 kDa,
PDI (Mw/Mn) = 8.3.

The SPABES-PAE block copolymers were prepared by controlling SPABES and PAE molar ratio
(1:2, 1:1, and 2:1). The polymerization of SPABES-PAE block copolymer (1:1) is as follows. SPABES
oligomer (1.00 g, 0.024 mmol), PAE oligomer (1.36 g, 0.024 mmol), K2CO3 (0.006 g, 0.048 mmol),
and DMAc/toluene (25 mL/20 mL) were put into 100 mL round-bottomed flask with a Dean–Stark
trap under an N2 atmosphere. Next, the reaction procedure and recrystallizations were carried out
in a similar procedures to the preparation of PAE oligomer to collect SPABES-PAE block copolymer
(1:1). 1H NMR (600 MHz, DMSO-d6): 7.0–8.4 ppm; GPC (LiBr in DMF, RI detector) Mn = 13.9 kDa,
Mw = 96.5 kDa, PDI (Mw/Mn) = 6.9.

SPABES-PAE block copolymer (1:2). 1H NMR (600 MHz, DMSO-d6): 7.0–8.4 ppm; GPC (LiBr in
DMF, RI detector) Mn = 24.0 kDa, Mw = 122.7 kDa, PDI (Mw/Mn) = 5.1.

SPABES-PAE block copolymer (2:1). 1H NMR (600 MHz, DMSO-d6): 7.0–8.4 ppm; GPC (LiBr in
DMF, RI detector) Mn = 16.7 kDa, Mw = 112.3 kDa, PDI (Mw/Mn) = 6.7.

2.3. Membrane Preparation

The membrane of SPABES-PAE block copolymers was prepared by solution casting method.
The copolymer solutions was casted on a glass dish and then dried in an oven at 90 ◦C for 24h.
After, all membranes were acidified in 1 M H2SO4 solution at 95 ◦C for 3 h and washed several times
to remove the excess H2SO4 over 10 h. Before using the membranes for measurement of chemical and
electric properties, SPABES-PAE block copolymer membranes were obtained by drying in an oven at
90 ◦C for 12 h (membrane thickness was 70 ± 10 µm).

2.4. Chraterizations

The 1H NMR spectra were analyzed by JNM-ECA 600 instrument (JEOL, Akishima, Tokyo, Japan).
The IR spectra were obtained by Frontier MIR/NIR spectrometer (PerkinElmer, Waltham, MA, USA).
The molecular weights (Mn, Mw, and Mz) and polydispersity indices (PDI, Mw/Mn) were measured by
HLC-8320 (Tosoh Corporation, Minato, Tokyo, Japan). The thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) were conducted by Q50 and Q20 (TA Instruments, New Castle,
DE, USA), respectively. The tapping mode-atomic force microscopy images were conducted by a Veeco
multimode atomic force microscope (AFM, Veeco Corporation, Plainview, NY, USA). The proton
conductivity was measured by conductivity test bench (Scitech Korea, Gangbuk, Seoul, Korea) [16–18].
The average ion domain size was recorded using EMPYREAN (Malvern Panalytical Ltd., Malvern,
Grovewood, UK) [19,20]. The fuel cell performance was measured using a single cell test station
(Scitech, Gangbuk, Seoul, Korea).

The activation energy (Ea) of membranes was calculated using:

lnσ = lnσo − (Ea/R × T), (1)

where R and T are the gas constant and Kelvin temperature, respectively [21].
The solubility of the copolymers was investigated by using concentration of 10 wt % at 60 ◦C in

variety of solvents.
The oxidative stability of membranes was measured into 3% H2O2 containing 4 ppm FeSO4

solution (Fenton’s reagent) at 60 ◦C for 8 h [12,22].
The IEC of all membranes was measured by the titration method [15,22]. In brief, all acidified

membranes were converted to salt form by immersing in 2 M NaCl solution for 36 h at room
temperature. And then the solution was titrated with 0.1 N NaOH solution using phenolphthalein as
an indicator.
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The water uptake and swelling ratio was evaluated using dried and wet membrane [23,24].
The water uptake value of the membranes was reported using the following equation:

Water uptake (%) = (Wwet − Wdry)/Wdry × 100%, (2)

where Wdry and Wwet are the membrane weights of the dried and wetted states.
The dimensional ratio was calculated using this equation:

Swelling ratio (%) = (Swet − Sdry)/Sdry × 100%, (3)

where Swet and Sdry are the corresponding volumes of membrane length, width, and thickness,
respectively [25,26].

2.5. Preparation of Membrane Electrode Assembly

The MEA was fabricated with membrane and commercial gas diffusion electrodes (GDE, loading
of 0.3 mg·cm–2 Pt/C). The electrodes were sandwiched to both sides of the membrane (press condition:
110 ◦C, at 1400 psi for 1 min). The single cell active area was 5 cm2, and humidified H2 (anode flow
rate: 0.1 L·min–1) and O2 (cathode flow rate: 0.4 L·min–1) were fed into the test station as fuel without
any back pressure.

3. Results and Discussion

3.1. Synthesis and Structural Properties of SPABES-PAE Block Copolymers

The SPABES-PAE block copolymers were successfully synthesized with different molar ratios of
SPABES and PAE oligomers through aromatic nucleophilic substitution reaction, and the synthetic
step is shown in Scheme S1. The chemical structure of prepared copolymers were characterized by
1H NMR (Figure 1).
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The proton signal of the non-sulfonated PABES-PAE was exhibited at 8.0–7.0 ppm, which indicated
the presence of phenylene groups. Whereas the proton signal of SPABES-PAE block copolymer was
shown at 8.7–7.0 ppm, and this observation coincided with the results from a previously reported
paper [12,15,25]. The proton signal of ortho to sulfone was shifted to the downfield owing to the strong
electron-withdrawing sulfonic acid groups. This tendency was also observed in the IR absorbance
(Figure 2). The IR absorbance of the diphenyl sulfone unit (split symmetric vibration) was observed
at 1013 and 1074 cm–1. The absorption bands of C=C stretching vibration was assigned at 1508 and
1595 cm–1, and the absorption band of the ether (C–O–C) was assigned at 1072 cm–1. The intensity
of the characteristic stretching vibrations of the sulfonic acid group also increased at 1044 cm–1 and
1401 cm–1, as the molar ratio of SPABES oligomer increased [15,27]. The molecular weights (Mw and
Mn) and PDI of copolymers are shown in Table 1 (molecular weights of the non-sulfonated PABES-PAE
and oligomers is shown in Table S1). The Mw of SPABES-PAE block copolymers (1:2, 1:1, and 2:1)
was in the range of 96 kDa to 122 kDa, specifying well formation of di- and tri- block copolymers.
To investigate the solubility of polymers, the solubility was evaluated using a variety of solvents with
a concentration of 10 wt % polymer, and is presented in Table S2. As a result, SPABES copolymers
were easily dissolved in several polar aprotic solvents, and were not dissolved in polar protic solvents.
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Table 1. The molecular weights (Mn, Mw, and Mz), and polydispersity index (PDI) of block copolymers.

Copolymer Mn (kDa) Mw (kDa) Mz (kDa) Mw/Mn (PDI)

SPABES-PAE (1:2) 24.0 122.7 418.0 6.9
SPABES-PAE (1:1) 13.9 96.5 411.1 6.7
SPABES-PAE (2:1) 16.7 112.3 453.1 5.1

3.2. Thermal Stabilities

Thermogravimetric analysis results of SPABES copolymers are given in Figure 3. The TGA
patterns of all copolymers exhibited three-step weight losses, except the PABES copolymer, as shown
Figure 3. The initial decomposition of SPABES-PAE block copolymers between 50 and 150 ◦C is
associated with the removal of non-bound and bound water molecules in the membranes. The second
decomposition of SPABES copolymers between 250 and 350 ◦C is related with the elimination of
sulfonic acid groups [28–30]. The third decomposition approximately over 420 ◦C is ascribed to the
ruining of aromatic polymer backbones. Differential scanning calorimetry results of the SPABES
copolymers are presented in Table 2 and Figure S1.
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Table 2. The mechanical behaviors and glass transition temperature of block copolymers.

Copolymer TS (MPa) YM (GPa) EB (%) Tg (°C)

SPABES-PAE (1:2) 40.3 0.48 17.9 177
SPABES-PAE (1:1) 36.8 0.36 18.1 184
SPABES-PAE (2:1) 28.9 0.33 19.1 188
PABES-PAE (1:1) 48.4 0.48 4.8 194

Tensile strength (TS), Toung’s modulus (YM), elongation at break (EB), Tg: glass transition temperature.

From these results, it can be seen that the glass transition (Tg) value increases as the hydrophilic
molar ratio increases. This may be due to the high glass transition temperature of sulfone bridges
in the hydrophilic oligomer [16]. Altogether, the thermal stabilities of SPABES-PAE are sufficient to
sustain the operation of fuel cells below 90 ◦C.
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3.3. Water Uptake, IEC, and Hydration Number Subsection

Both the hydrophilic and hydrophobic domains have effects on the properties of membrane
such as water absorption, dimensional stability, proton conductivity, etc. Generally, the sulfonated
aromatic membranes possessing IEC values of over 2.0 mequiv.·g−1 show an excessive water uptake
and swelling ratio. On the other hand, the aromatic polymer membrane possessing aggregation of
the hydrophobic domain reduce the swelling ratio and water uptake, and the membranes containing
fluorine functional groups in the backbone were reported to have well phase separation and high
dimensional stability in the hydrated state [31]. The results of water uptake are presented in Table 3 and
Figure S1a. As expected, the water uptake of SPABES-PAE membranes increased with the increasing
molar ratio of the hydrophilic block. The water absorption of the SPABES-PAE membranes was
21%, 36%, and 52%, respectively. These results indicate that the SPABES-PAE membranes have
low water uptake compared with the most recently reported PEMs [32–35] (Table 4). The IEC of
Nafion 212 and SPABES-PAE membranes was in the range of 0.55–1.23 mequiv.·g−1. The IEC of
SPABES-PAE membranes increased as the molar ratio of hydrophilic oligomer increased (Table 3).
The hydration number of membranes was calculated from the results of IEC and water uptake.
Generally, the hydration number indicates the number of water molecules absorbed per unit volume
of the –SO3H group in the membranes. According to the evaluation result, Nafion 212 showed λ value
of 25.6, while SPABES-PAE membranes (1:2, 1:1, and 2:1) showed λ values of 21.2, 22.7, and 23.6.
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Table 3. Ion exchange capacity (IEC), water uptake, and dimensional stability of SPABES-PAE and
Nafion 212 membranes.

Membrane
IEC

(mequiv.·g−1)
Water Uptake (%) Dimensional Stability (%)

30 ◦C 90 ◦C 30 ◦C 90 ◦C

SPABES-PAE (1:2) 0.55 14 21 3.0 26.9
SPABES-PAE (1:1) 0.87 24 36 4.5 39.3
SPABES-PAE (2:1) 1.23 34 52 10.1 42.4

Nafion 212 0.91 18 42 3.0 52.1

Table 4. IEC, water uptake, and proton conductivity comparison between recently reported proton
exchange membranes (PEMs).

Membrane IEC (mequiv.·g−1)
Water uptake (%)

at 90 ◦C
Proton conductivity

(mS·cm−1) Refs

SPABES-PAE (1:2) 0.55 21.1 48.6 (90 ◦C) this work
SPABES-PAE (1:1) 0.87 36 81.9 (90 ◦C) this work
SPABES-PAE (2:1) 1.23 52.2 131.9 (90 ◦C) this work

tsPTPO-100 1.65 72.1 96.4 (90 ◦C) [32]
IBQSH-60 1.39 30.0 49.0 (80 ◦C) [33]

SPAES-6FBPA-40 1.25 36.5 101.1 (90 ◦C) [34]
B20V80-SDPA 1.89 65.1 114.4 (90 ◦C) [35]

3.4. Dimensional Change and Mechanical Strength

Generally, the dimensional change of the membrane is related to the IEC value. The PEMs
with high IEC lead to high water absorption, resulting in excessive dimensional changes [36,37].
Therefore, the dimensional stability of the membrane is one of the important key factors to be evaluated
before fabrication of MEA. As shown in Table 3 and Figure S1b–d, the dimensional stability of
SPABES-PAE and Nafion 212 membranes were in the range of 26.9–52.1% at 90 ◦C. Among the
SPABES-PAE membranes, dimensional stability of SPABES-PAE (2:1) was 1.26 times lower than Nafion
212 membranes, which indicate that the PEMs containing strong hydrophobic parts improve the
repulsive power against to water.

The PEMs have sufficient physical strength to be used in the fabrication of MEAs. The mechanical
behavior (i.e., tensile strength (TS), Young’s modulus (YM), and elongation at break (EB)) of SPAE-PAE
membranes was investigated at 25 ◦C and fully hydrated and are shown in Table 2. According
to the results, TS and YB decreased while EB increased with increasing hydrophilic molar ratio.
This means that as the hydrophilic molar ratio in the polymer increases, the flexibility and elasticity of
the membrane increases.

3.5. Proton Conductivity and Activation Energy

The proton conductivity values of the SPABES-PAE and Nafion 212 membranes are presented
in Figure 4 and Table 5. The proton conductivity values of Nafion 212 and SPABES-PAE membranes
increased with increasing temperature due to rapid proton movement. It can be seen that all the
membranes showed proton conductivity of 48–132 mS·cm−1. The proton conductivity of SPABES-PAE
(2:1) membrane was up to 132 mS·cm−1 at 90 ◦C, which is closer to the proton conductivity of
Nafion 212 (148 mS·cm−1). This may be due to a higher number of proton conducting highways in
SPABES-PAE membranes attained by a high ratio of hydrophilic oligomer [38–40]. As the hydrophilic
oligomer content increased, the prepared SPABES-PAE membranes provided a broad pathway for
proton conduction. Then, broad proton conduction pathways increase the movement of protons
through the membranes.
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Table 5. Hydration number, proton conductivity, activation energy (Ea), and power density of
SPABES-PAE and Nafion 212 membranes.

Membrane
Hydration number a

(H2O/SO3H)

Proton conductivity
(mS·cm−1) b

Ea (kJ·mol−1)
Peak power density

(mW·cm−2) c
30 ◦C 90 ◦C

SPABES-PAE (1:2) 21.2 21.2 48.6 10.89 183.6
SPABES-PAE (1:1) 22.7 41.4 81.9 10.39 253.3
SPABES-PAE (2:1) 23.6 77.1 131.9 9.22 333.2

Nafion 212 25.6 79.3 148.6 9.56 430.9
a Reference [13]. b Measured under 100% RH. c Measured at 60 ◦C under 100% RH.

The calculated activation energies of SPABES-PAE membranes (1:2, 1:1 and 2:1) were 10.89, 10.39,
and 9.22 kJ·mol−1 (Figure 5 and Table 4) [41], respectively, while that of Nafion 212 was 9.56 kJ·mol−1.
According to the results, the activation energies of SPABES-PAE and Nafion 212 membranes were
low, indicating that proton transport is easy in the prepared membranes and Nafion 212 because low
activation energies mean low membrane resistance.
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3.6. Oxidative Stability and Single Cell Performance

The oxidative stability of fabricated membranes was investigated at 60 ◦C in Fenton’s reagent
(4 ppm FeSO4 in 3% H2O2) and the results are summarized in Figure 6. The oxidative stability of
membranes was measured for 8 h in Fenton’s reagent. The weight loss (%) of SPABES-PAE membranes
was slightly changed over 1 h. However the decomposition of prepared membranes exhibited sharp
increases after 1 h, and the residual weight (%) of SPABES-PAE membranes (1:2, 1:1, and 2:1) were
80%, 78%, and 76% after 8 h, respectively. The better stability of SPABES-PAE membrane compared
to other PEMs can be ascribed to the block copolymer structure containing fluorine and thiophene
units, which indicated that the fluorine and thiophene units enhanced the resistance of radical attack,
and these results well matched with previous reported papers [15,42,43].
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All MEAs were fabricated with SPABES-PAE and Nafion 212 membranes to obtained polarization
and open circuit voltage (OCV) curves. The polarization and power density curves of SPABES-PAE
and Nafion 212 membranes were investigated under 100% RH at 60 ◦C and the results are shown
in Figure 7 and Table 5. All prepared membranes exhibited an OCV around 0.92 V, indicating that
the membranes had good gas barrier properties in environments of H2 and O2 gas systems [44–46].
The maximum power density of fabricated MEA of SPABES-PAE showed a difference depending on
hydrophilic oligomer ratio in polymer. The maximum power density of SPABES-PAE membranes
(1:2, 1:1, and 2:1) were 183.6, 253.3, and 333.29 mW·cm−2, respectively. Although Nafion 212 when
compared to prepared SPABES membranes showed the best single cell performance, the power
density of the SPABES X2Y1 membrane confirmed that the results were very close to Nafion 212
(430.9 mW·cm−2). The SPABES-PAE membrane is expected to be a very promising membrane to
replace Nafion 212. Therefore, these results clearly indicate that the hydrophilic oligomer ratio in the
polymer membrane increased the electrochemical properties, due to the retention of large amounts of
water molecules and increase of ion channels.
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3.7. Morphology

The microstructure of the SPABES-PAE membranes was investigated by atomic force microscopy
(AFM) (Figure 8). In this AFM phase image, the bright regions represent the hydrophobic domains,
whereas dark regions represent the hydrophilic domains [47–49]. The AFM image suggests that the
sulfonic acid groups were aggregated, which provide a proton transfer pathway or an ion transfer
pathway. It was confirmed that as the hydrophilic oligomer content increased, the dark domain areas
increased, and this suggests that the ionic conductivity increased. Furthermore, the ion cluster size of
SPABES-PAE membranes was analyzed by small angle X-ray scattering (SAXS) measurement, and the
results are shown in Figure 9 and Table 6. The scattering vector (q) of SPABES-PAE membranes is shown
in the range of 0.810–0.817 nm−1, which indicates the ionic cluster dimension of approximately 7.71 nm.
Even if the SPABES-PAE membranes have different molar ratio of hydrophilic and hydrophobic
oligomers, the SAXS pattern showed similar ion cluster size.
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Figure 8. Atomic force microscopy (AFM) height images of membranes of (a) SPABES-PAE (1:2),
(b) SPABES-PAE (1:1), and (c) SPABES-PAE (2:1); AFM phase images of membranes of (d) SPABES-PAE
(1:2), (e) SPABES-PAE (1:1), and (f) SPABES-PAE (2:1).
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Table 6. The scattering vector (qmax) and ion cluster size of SPABES-PAE membranes.

Membrane Scattering vector (qmax, nm−1) Ion cluster size (nm)

SPABES-PAE (1:2) 0.810 7.75
SPABES-PAE (1:1) 0.815 7.71
SPABES-PAE (2:1) 0.817 7.69

4. Conclusions

The SPABES-PAE (1:2, 1:1, and 2:1) block copolymers were synthesized by controlling the molar
ratio of SPABES and PAE oligomers via a nucleophilic aromatic substitution reaction. The chemical
structure of synthesized SPABES-PAE was confirmed through 1H NMR, IR, and GPC. The fabricated
SPABES-PAE membranes have reasonable dimensional stabilities (water uptake and swelling ratio),
and the AFM and SAXS results show well-defined ion transport channels. The proton conductivity of
SPABES-PAE (2:1) membrane (IEC = 1.23 mequiv.·g−1) showed 129 mS·cm−1 (at 90 ◦C under 100% RH),
which is similar to Nafion 212 (148.6 mS·cm−1, under the same condition). Moreover, the SPABES-PAE
(2:1) membrane (333.2 mW·cm−2) showed remarkable sing cell performance at 100% RH and 60 ◦C,
when compared with Nafion 212 (430.9 mW·cm−2). Overall, the SPABES-PAE membranes showed high
oxidative/thermal stability compared with other aromatic hydrocarbon membranes, and balanced
properties of PEM between water resistances and proton conductivities, which indicate that it is
a promising candidate as PEM material for PEMFCs.
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