Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups
Abstract
1. Introduction
2. Experimental
2.1. Reagents
2.2. Chemical Synthesis
2.3. Copolymer Characterization
2.3.1. Spectroscopic Analysis
2.3.2. Copolymer Composition
2.3.3. Solubility Testing
2.3.4. Electrochemical Characterization
2.3.5. Electrochemical Impedance Spectroscopy
2.3.6. UV-Vis Analysis
2.3.7. Thermogravimetric Analysis
2.3.8. Computational Calculations
3. Results and Discussion
3.1. Copolymer Composition
3.2. FTIR Spectroscopy
3.3. Solubility
3.4. Electrochemical Results
3.5. Electrochemical Impedance Spectroscopy
3.6. UV-Vis Spectroscopy
3.7. Thermal Stability
3.8. Computational Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, W.S.; Humphrey, B.D.; MacDiarmid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of Its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1986, 82, 2385–2400. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G. Recent Advances in Polyaniline Research: Polymerization Mechanisms, Structural Aspects, Properties and Applications. Synth. Met. 2013, 177, 1–47. [Google Scholar] [CrossRef]
- Hong, X.; Liu, Y.; Li, Y.; Wang, X.; Fu, J.; Wang, X. Application Progress of Polyaniline, Polypyrrole and Polythiophene in Lithium-Sulfur Batteries. Polymers 2020, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, L.; Li, W.; Waje, M.; Yan, Y. Polyaniline Nanofibre Supported Platinum Nanoelectrocatalysts for Direct Methanol Fuel Cells. Nanotechnology 2006, 17, 5254–5259. [Google Scholar] [CrossRef]
- Zhai, D.D.; Fang, Z.; Jin, H.; Hui, M.; Kirubaharan, C.J.; Yu, Y.Y.; Yong, Y.-C. Vertical Alignment of Polyaniline Nanofibers on Electrode Surface for High-Performance Microbial Fuel Cells. Bioresour. Technol. 2019, 288, 121499. [Google Scholar] [CrossRef] [PubMed]
- Shoaie, N.; Daneshpour, M.; Azimzadeh, M.; Mahshid, S.; Khoshfetrat, S.M.; Jahanpeyma, F.; Gholaminejad, A.; Omidfar, K.; Foruzandeh, M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Microchim. Acta 2019, 186, 465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, B.; Li, X.; Xu, G.; Dou, S.; Zhang, X.; Chen, X.; Zhao, J.; Zhang, K.; Li, Y. Further Understanding of the Mechanisms of Electrochromic Devices with Variable Infrared Emissivity Based on Polyaniline Conducting Polymers. J. Mater. Chem. C. 2019, 7, 9878–9891. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; Morallón, E.; Cazorla-Amorós, D. Oxygen-Reduction Catalysis of N-Doped Carbons Prepared: Via Heat Treatment of Polyaniline at over 1100 °C. Chem. Commun. 2018, 54, 4441–4444. [Google Scholar] [CrossRef] [PubMed]
- Ćirić-Marjanović, G.; Pašti, I.; Gavrilov, N.; Janošević, A.; Mentus, S. Carbonised Polyaniline and Polypyrrole: Towards Advanced Nitrogen-Containing Carbon Materials. Chem. Pap. 2013, 67, 781–813. [Google Scholar] [CrossRef]
- Huang, X.; Yin, X.; Yu, X.; Tian, J.; Wu, W. Preparation of Nitrogen-Doped Carbon Materials Based on Polyaniline Fiber and Their Oxygen Reduction Properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 163–170. [Google Scholar] [CrossRef]
- Gabe, A.; Mostazo-López, M.J.; Salinas-Torres, D.; Morallón, E.; Cazorla-Amorós, D. Synthesis of Conducting Polymer/Carbon Material Composites and Their Application in Electrical Energy Storage. In Hybrid Polymer Composite Materials; Thakur, V., Thakur, M., Gupta, R., Eds.; Woodhead Publishing: Sawston/Cambridge, UK, 2017; pp. 173–209. [Google Scholar] [CrossRef]
- Rauhala, T.; Davodi, F.; Sainio, J.; Sorsa, O.; Kallio, T. On the Stability of Polyaniline/Carbon Nanotube Composites as Binder-Free Positive Electrodes for Electrochemical Energy Storage. Electrochim. Acta 2020, 336, 135735. [Google Scholar] [CrossRef]
- Ratlam, C.; Phanichphant, S.; Sriwichai, S. Development of Dopamine Biosensor Based on Polyaniline/Carbon Quantum Dots Composite. J. Polym. Res. 2020, 27, 183. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Rawool, C.R.; Karna, S.P.; Srivastava, A.K. Nitrogen-Doped Graphene/Palladium Nanoparticles/Porous Polyaniline Ternary Composite as an Efficient Electrode Material for High Performance Supercapacitor. Mater. Sci. Energy Technol. 2019, 2, 246–257. [Google Scholar] [CrossRef]
- Liao, G.; Li, Q.; Xu, Z. The Chemical Modification of Polyaniline with Enhanced Properties: A Review. Prog. Org. Coat. 2019, 126, 35–43. [Google Scholar] [CrossRef]
- Jaymand, M. Recent Progress in Chemical Modification of Polyaniline. Prog. Polym. Sci. 2013, 38, 1287–1306. [Google Scholar] [CrossRef]
- Malinauskas, A. Self-Doped Polyanilines. J. Power Sources 2004, 126, 214–220. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Strakhova, A.K.; Yatsimirsky, A.K. Self-Doped Polyanilines Electrochemically Active in Neutral and Basic Aqueous Solutions.: Electropolymerization of Substituted Anilines. J. Electroanal. Chem. 1994, 371, 259–265. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Acevedo, D.F.; Miras, M.C.; Motheo, A.J.; Barbero, C.A. Comparative Study of 2-Amino and 3-Aminobenzoic Acid Copolymerization with Aniline Synthesis and Copolymer Properties. J. Polym. Sci. Part. A Polym. Chem. 2004, 42, 5587–5599. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Kasai, P.; Miller, J.L.; Diaz, A.F. Synthesis and Properties of Novel Water-Soluble Conducting Polyaniline Copolymers. Macromolecules 1994, 27, 3625–3631. [Google Scholar] [CrossRef]
- Yue, J.; Epstein, A.J.; Macdiarmid, A.G. Sulfonic Acid Ring-Substituted Polyaniline, A Self-Doped Conducting Polymer. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1990, 189, 255–261. [Google Scholar] [CrossRef]
- Cataldo, F.; Maltese, P. Synthesis of Alkyl and N-Alkyl-Substituted Polyanilines: A Study on Their Spectral Properties and Thermal Stability. Eur. Polym. J. 2002, 38, 1791–1803. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Arias, J.; Garcés, P.; Morallón, E.; Barbero, C.; Vázquez, J.L. Spectroelectrochemical Study of the Oxidation of Aminophenols on Platinum Electrode in Acid Medium. J. Electroanal. Chem. 2004, 565, 375–383. [Google Scholar] [CrossRef]
- Benyoucef, A.; Huerta, F.; Vázquez, J.L.; Morallon, E. Synthesis and in Situ FTIRS Characterization of Conducting Polymers Obtained from Aminobenzoic Acid Isomers at Platinum Electrodes. Eur. Polym. J. 2005, 41, 843–852. [Google Scholar] [CrossRef]
- Sanchís, C.; Salavagione, H.J.; Arias-Pardilla, J.; Morallón, E. Tuning the Electroactivity of Conductive Polymer at Physiological pH. Electrochim. Acta 2007, 52, 2978–2986. [Google Scholar] [CrossRef]
- Arias-Pardilla, J.; Salavagione, H.J.; Barbero, C.; Morallón, E.; Vázquez, J.L. Study of the Chemical Copolymerization of 2-Aminoterephthalic Acid and Aniline.: Synthesis and Copolymer Properties. Eur. Polym. J. 2006, 42, 1521–1532. [Google Scholar] [CrossRef]
- Chan, H.S.O.; Ng, S.C.; Ho, P.K.H. Polyanilines Doped with Phosphonic Acids: Their Preparation and Characterization. Macromolecules 1994, 27, 2159–2164. [Google Scholar] [CrossRef]
- Ghil, L.J.; Youn, T.Y.; Park, N.R.; Rhee, H.W. Proton Conductive Nano-Channel Membranes Based on Polyaniline with Phosphonic Acid Moieties for Low Relative Humidity. J. Nanosci. Nanotechnol. 2013, 13, 7912–7915. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; Ghisolfi, A.; Grau-Marín, D.; San-Fabián, E.; Morallón, E.; Cazorla-Amorós, D. Post-Synthetic Efficient Functionalization of Polyaniline with Phosphorus-Containing Groups. Effect of Phosphorus on Electrochemical Properties. Eur. Polym. J. 2019, 119, 272–280. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.J.; Guo, L.R.; Li, J.; Xia, X.H.; Zheng, L.M. Direct Electrochemistry and Electrocatalysis of Hemoglobin at Three-Dimensional Gold Film Electrode Modified with Self-Assembled Monolayers of 3-Mercaptopropylphosphonic Acid. Anal. Chim. Acta 2009, 644, 83–89. [Google Scholar] [CrossRef]
- Panella, L.; Broos, J.; Jin, J.; Fraaije, M.W.; Janssen, D.B.; Jeronimus-Stratingh, M.; Feringa, B.L.; Minnaard, A.J.; De Vries, J.G. Merging Homogeneous Catalysis with Biocatalysis; Papain as Hydrogenation Catalyst. Chem. Commun. 2005, 23, 5656–5658. [Google Scholar] [CrossRef]
- Quintero-Jaime, A.F.; Cazorla-Amorós, D.; Morallón, E. Electrochemical Functionalization of Carbon Nanomaterials and Their Application in Immobilization of Enzymes. In Nanomaterials for Bio-Catalysis; Castro, G., Kurma, A., Nguyen, Y., Qi, X., Yasin, G., Eds.; Elsevier: Amsterdam, The Netherlands.
- Papadimitriou, K.D.; Andreopoulou, A.K.; Kallitsis, J.K. Phosphonated Fully Aromatic Polyethers for PEMFCs Applications. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2817–2827. [Google Scholar] [CrossRef]
- Chan, H.S.O.; Ho, P.K.H.; Ng, S.C.; Tan, B.T.G.; Tan, K.L. A New Water-Soluble, Self-Doping Conducting Polyaniline from Poly(o-Aminobenzylphosphonic Acid) and Its Sodium Salts: Synthesis and Characterization. J. Am. Chem. Soc. 1995, 117, 8517–8523. [Google Scholar] [CrossRef]
- Amaya, T.; Abe, Y.; Inada, Y.; Hirao, T. Synthesis of Self-Doped Conducting Polyaniline Bearing Phosphonic Acid. Tetrahedron Lett. 2014, 55, 3976–3978. [Google Scholar] [CrossRef]
- Amaya, T.; Kurata, I.; Inada, Y.; Hatai, T.; Hirao, T. Synthesis of Phosphonic Acid Ring-Substituted Polyanilines via Direct Phosphonation to Polymer Main Chains. RSC Adv. 2017, 7, 39306–39313. [Google Scholar] [CrossRef]
- Jin, Z.; Lucht, B.L. Poly-p-Phenylene Phosphine/Polyaniline Alternating Copolymers: Electronic Delocalization through Phosphorus. J. Am. Chem. Soc. 2005, 127, 5586–5595. [Google Scholar] [CrossRef] [PubMed]
- Bober, P.; Trchová, M.; Morávková, Z.; Kovářová, J.; Vulić, I.; Gavrilov, N.; Pašti, I.A.; Stejskal, J. Phosphorus and Nitrogen-Containing Carbons Obtained by the Carbonization of Conducting Polyaniline Complex with Phosphites. Electrochim. Acta 2017, 246, 443–450. [Google Scholar] [CrossRef]
- Martínez-Sánchez, B.; Quintero-Jaime, A.F.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization. Polymers 2020, 12, 1029. [Google Scholar] [CrossRef] [PubMed]
- Odian, G. Chain Copolymerization. In Principles of Polymerization, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NY, USA, 1991; pp. 464–543. [Google Scholar] [CrossRef]
- Ramachandran, K.I.; Deepa, G.; Namboori, K. Computational Chemistry and Molecular Modeling; Springer: Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian Development Version, Revision I. 13; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kang, E.T.; Neoh, K.G.; Tan, K.L. The Intrinsic Redox States in Polypyrrole and Polyaniline: A Comparative Study by XPS. Surf. Interface Anal. 1992, 19, 33–37. [Google Scholar] [CrossRef]
- Botelho do Rego, A.M.; Ferraria, A.M.; El Beghdadi, J.; Debontridder, F.; Brogueira, P.; Naaman, R.; Rei Vilar, M. Adsorption of Phenylphosphonic Acid on GaAs (100) Surfaces. Langmuir 2005, 21, 8765–8773. [Google Scholar] [CrossRef]
- Blanchard, P.E.R.; Grosvenor, A.P.; Cavell, R.G.; Mar, A. X-Ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr−Ni). Chem. Mater. 2008, 20, 7081–7088. [Google Scholar] [CrossRef]
- Quintero-Jaime, A.F.; Cazorla-Amorós, D.; Morallón, E. Electrochemical Functionalization of Single Wall Carbon Nanotubes with Phosphorus and Nitrogen Species. Electrochim. Acta 2020, 340, 135935. [Google Scholar] [CrossRef]
- Brožová, L.; Holler, P.; Kovářová, J.; Stejskal, J.; Trchová, M. The Stability of Polyaniline in Strongly Alkaline or Acidic Aqueous Media. Polym. Degrad. Stab. 2008, 93, 592–600. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Hampton, C.; Demoin, D.; Glaser, R. Vibrational Spectroscopy Tutorial: Sulfur and Phosphorus, Vib. Spectrosc. 2010. Available online: http://faculty.missouri.edu/~glaserr/8160f10/A03_Silver.pdf (accessed on 25 August 2020).
- Shao, W.; Jamal, R.; Xu, F.; Ubul, A.; Abdiryim, T. The Effect of a Small Amount of Water on the Structure and Electrochemical Properties of Solid-State Synthesized Polyaniline. Materials 2012, 5, 1811–1825. [Google Scholar] [CrossRef]
- Duić, L.; Mandić, Z.; Kovač, S. Polymer-Dimer Distribution in the Electrochemical Synthesis of Polyaniline. Electrochim. Acta 1995, 40, 1681–1688. [Google Scholar] [CrossRef]
- Berenguer, R.; Ruiz-Rosas, R.; Gallardo, A.; Cazorla-Amorós, D.; Morallón, E.; Nishihara, H.; Kyotani, T.; Rodríguez-Mirasol, J.; Cordero, T. Enhanced Electro-Oxidation Resistance of Carbon Electrodes Induced by Phosphorus Surface Groups. Carbon 2015, 95, 681–689. [Google Scholar] [CrossRef]
- Glarum, S.H.; Marshall, J.H. Electron Delocalization in Poly(Aniline). J. Phys. Chem. 1988, 92, 4210–4217. [Google Scholar] [CrossRef]
- MacDiarmind, A.G.; Epstein, A.J. Polyaniline: Synthesis, Chemistry, and Processing. In New Aspects of Organic Chemistry II; Kodansha: Tokyo, Japan; VCH: Weinheim, Germany, 1992; p. 271. [Google Scholar]
- Wei, Y.; Hsueh, K.F. Thermal Analysis of Chemically Synthesized Polyaniline and Effects of Thermal Aging on Conductivity. J. Polym. Sci. Part. A Polym. Chem. 1989, 27, 4351–4363. [Google Scholar] [CrossRef]
- Lafitte, B.; Jannasch, P. On the Prospects for Phosphonated Polymers as Proton-Exchange Fuel Cell Membranes. In Advances in Fuel Cells; Zhao, T.S., Kreuer, K.-D., Nguyen, T.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 119–185. [Google Scholar]
Sample | Atomic Formula * | N/at% | C/at% | O/at% | P/at% | P/N | O/P ** | N+/N/% |
---|---|---|---|---|---|---|---|---|
PANI | C7.4HxN1.0O0.3 | 11.4 | 84.0 | 2.9 | 0.0 | - | - | 7 |
PANI2APPA (80/20) | C7.1HxN1.0P0.2O0.9 | 10.8 | 76.5 | 9.9 | 2.3 | 0.21 | 3.0 | 18 |
PANI2APPA (50/50) | C6.8HxN1.0P0.5O2.0 | 9.6 | 65.0 | 19.1 | 5.1 | 0.53 | 3.2 | 30 |
PANI4APPA (50/50) | C7.6HxN1.0P0.2O0.7 | 10.4 | 79.5 | 6.9 | 1.7 | 0.16 | 2.4 | 5 |
Sample | fANI | FANI | Reactivity | Reactivity Ratio (Rr = rANI/rAPPA) | Average Length Segment | ||
---|---|---|---|---|---|---|---|
rANI | rAPPA | NANI | NAPPA | ||||
PANI2APPA | 0.8 | 0.79 | 1.0 | 1.3 | 0.8 | 5.0 | 1.3 |
0.5 | 0.47 | 2.0 | 2.3 | ||||
PANI4APPA | 0.5 | 0.84 | 5.6 | 0.3 | 18.9 | 6.6 | 1.3 |
Wavenumber/cm−1 | Assignments | References | |
---|---|---|---|
Experimental | Theoretical | ||
1583 | 1550 | C–C quinoid ring stretching | [47,48] |
1491 | 1509 | C–C benzenoid ring stretching | [47,48] |
1374 | - | C–N= in the neighborhoud of a quinoid ring | [47,50] |
1305 | 1327–1340 | C-H stretching, C–N–C stretching, or p-electron delocalization | [25,47,50] |
1245 | - | C–N+ stretching of secondary aromatic amine in the polaron structure | [25,50] |
1214 * | 1221–1257 * | P=O stretching | [27,48] |
1140 | 1146 | C–H aromatic bending in-plane | [47] |
1075 * | 1074 * | P–O–C out-of-plane stretching, P–Ar stretching | [48,49] |
1040 * | 1054 * | P–O stretching in O=P–OH with a single neighboring –OH group | [34,48,49] |
900–930 * | 930 * | P–O stretching in O=P–OH with a single neighboring –OH group | [34,48,49] |
820 | 834–850 | C–H aromatic bending out-of-plane | [50] |
Samples | Rs/Ω |
---|---|
PANI | 6.7 |
PANI2APPA (80/20) | 10.5 |
PANI2APPA (50/50) | 35.6 |
PANI4APPA (50/50) | 11.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sánchez, B.; Cazorla-Amorós, D.; Morallón, E. Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups. Polymers 2020, 12, 2820. https://doi.org/10.3390/polym12122820
Martínez-Sánchez B, Cazorla-Amorós D, Morallón E. Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups. Polymers. 2020; 12(12):2820. https://doi.org/10.3390/polym12122820
Chicago/Turabian StyleMartínez-Sánchez, Beatriz, Diego Cazorla-Amorós, and Emilia Morallón. 2020. "Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups" Polymers 12, no. 12: 2820. https://doi.org/10.3390/polym12122820
APA StyleMartínez-Sánchez, B., Cazorla-Amorós, D., & Morallón, E. (2020). Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups. Polymers, 12(12), 2820. https://doi.org/10.3390/polym12122820