Next Article in Journal
Preparation and Characterization of Semi-Flexible Substrates from Natural Fiber/Nickel Oxide/Polycaprolactone Composite for Microstrip Patch Antenna Circuitries for Microwave Applications
Previous Article in Journal
Synergistic Effect of Cellulose Nanofiber and Nanoclay as Distributed Phase in a Polypropylene Based Nanocomposite System
Open AccessArticle

Desiccation Cracking Behavior of Polyurethane and Polyacrylamide Admixed Clayey Soils

1
School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
2
Council of Scientific and Industrial Research (CSIR)-Central Building Research Institute (CBRI), Roorkee 247667, India
*
Author to whom correspondence should be addressed.
Polymers 2020, 12(10), 2398; https://doi.org/10.3390/polym12102398
Received: 8 September 2020 / Revised: 10 October 2020 / Accepted: 13 October 2020 / Published: 18 October 2020
(This article belongs to the Section Polymer Applications)
There has been a growing interest in polymer applied for soil reinforcement in recent years. However, there little attention has been paid to the effects of polymer on soil cracking behavior, and cracks significantly change soil strength and hydraulic properties and alter reinforcement effectiveness. This study investigated the desiccation cracking behavior of polyurethane (PU) and polyacrylamide (PAM) admixed clayey soils with different polymer concentrations by performing desiccation cracking tests. Scanning electron microscope (SEM) observation was also carried out to obtain the internal structure of these soils. The results show that PU and PAM addition both prolonged the initial evaporation stage, accelerated later evaporation processes, and the effects were related to polymer concentration. Final cracks morphology analyses show that PAM addition slightly reduced the cracking and crushing degree and kept the soil relatively intact, while PU addition slightly enhanced the cracking and crushing degree of soil. In addition, PU and PAM addition both increased the width and length of cracks. The scanning electron microscopy (SEM) analyses show that the effects of polymer on soil evaporation and cracking could be concluded as: (1) storing water in voids, (2) influencing water immigration channel, (3) providing space for soil shrinkage, and (4) enhancing the connection between aggregates, which did not fully come into play because of the existence of hydrogel form. These achievements provide a certain basis for the research of desiccation cracking behavior of polymer treated soil and make significant sense for the safe and effective running of related projects. View Full-Text
Keywords: clayey soil; polymer; evaporation; desiccation cracking; microstructure clayey soil; polymer; evaporation; desiccation cracking; microstructure
Show Figures

Graphical abstract

MDPI and ACS Style

Qi, C.; Bai, Y.; Liu, J.; Bu, F.; Kanungo, D.P.; Song, Z.; He, X. Desiccation Cracking Behavior of Polyurethane and Polyacrylamide Admixed Clayey Soils. Polymers 2020, 12, 2398.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop