Fabrication of Eco-Friendly Superabsorbent Composites Based on Waste Semicoke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Superabsorbent Composites
2.3. Water Absorbency and Swelling Kinetics Measurements
2.4. Water Retention and Reswelling Capability Measurements
2.5. Characterization
3. Results and Discussions
3.1. FTIR Analysis
3.2. SEM Analysis
3.3. Water Absorbency
3.3.1. Effect of Initiator Content on Water Absorbency
3.3.2. Effect of Crosslinker Content on Water Absorbency
3.3.3. Effect of Neutralization Degree on Water Absorbency
3.3.4. Effect of Semicoke Content on Water Absorbency
3.3.5. Effect of pH on Water Absorbency
3.3.6. Swelling Kinetics
3.3.7. Water-Retention Capacity at Room Temperature
3.3.8. Reswelling Capability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Olad, A.; Pourkhiyabi, M.; Gharekhani, H.; Doustdar, F. Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: Reaction parameters and swelling characteristics. Carbohydr. Polym. 2018, 190, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Burr, R.C.; Fanta, G.F.; Doane, W.M. Graft polymerization of starch with mixtures of acrylonitrile and 2-acrylamido-2-methylpropanesulfonic acid. J. Appl. Polym. Sci. 1979, 24, 1387–1390. [Google Scholar] [CrossRef]
- Azizi, A.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Bouhendi, H.; Karami, Z. Preparation and characterization of superabsorbent polymers based on sawdust. Polymers 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Motamedi, E.; Motesharezedeh, B.; Shirinfekr, A.; Samar, S.M. Synthesis and swelling behavior of environmentally friendly starch-based superabsorbent hydrogels reinforced with natural char nano/micro particles. J. Environ. Chem. Eng. 2020, 8, 103583–103592. [Google Scholar] [CrossRef]
- Shahi, S.; Zohuriaan-Mehr, M.J.; Omidian, H. pH-Sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J. Bioact. Compat. Polym. 2016, 32, 128–145. [Google Scholar] [CrossRef]
- Beaugeard, V.; Muller, J.; Graillot, A.; Ding, X.; Robin, J.J.; Monge, S. Acidic polymeric sorbents for the removal of metallic pollution in water: A review. React. Funct. Polym. 2020, 152, 104599–104617. [Google Scholar] [CrossRef]
- Czarnecka, E.; Nowaczyk, J. Semi-natural superabsorbents based on starch-g-poly (acrylic acid): Modification, synthesisand application. Polymers 2020, 12, 1794. [Google Scholar] [CrossRef]
- Oyama, Y.; Osaki, T.; Kamiya, K.; Sawai, M.; Sakai, M.; Takeuchi, S. A sensitive point-of-care testing chip utilizing superabsorbent polymer for the early diagnosis of infectious disease. Sens. Actuators B Chem. 2017, 240, 881–886. [Google Scholar] [CrossRef]
- Jeong, D.; Joo, S.W.; Hu, Y.; Shinde, V.V.; Cho, E.; Jung, S. Carboxymethyl cellulose-Based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. Eur. Polym. J. 2018, 105, 17–25. [Google Scholar] [CrossRef]
- Yang, S.T.; Park, Y.S. Release pattern of dexamethasone after administration through an implant-mediated drug delivery device with an active plunger of superabsorbent polymer. Drug. Deliv. Transl. Res. 2018, 8, 702–707. [Google Scholar] [CrossRef]
- Li, A.; Wang, A.; Chen, J. Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. synthesis and characterization. J. Appl. Polym. Sci. 2004, 92, 1596–1603. [Google Scholar] [CrossRef]
- Li, A.; Wang, A.; Chen, J. Studies on poly (acrylic acid)/attapulgite superabsorbent composites. II. swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent-water mixtures. J. Appl. Polym. Sci. 2004, 94, 1869–1876. [Google Scholar] [CrossRef]
- Čalija, B.; Mili, J.; Milašinovi, N.; Dakovi, A.; Trifkovi, K.; Stojanovi, J.; Krajišnik, D. Functionality of chitosan-halloysite nanocomposite films for sustained delivery of antibiotics: The effect of chitosan molar mass. J. Appl. Polym. Sci. 2020, 137, 48406–48417. [Google Scholar] [CrossRef]
- Sarkar, S.; Datta, S.C.; Biswas, D.R. Effect of fertilizer loaded nanoclay/superabsorbent polymer composites on nitrogen and phosphorus release in soil. Proc. Natl. Acad. Sci. USA 2015, 85, 415–421. [Google Scholar] [CrossRef]
- Sanchez, L.M.; Alvarez, V.A.; Ollier, R.P. Acid-treated Bentonite as filler in the development of novel composite PVA hydrogels. J. Appl. Polym. Sci. 2019, 47, 47663–47672. [Google Scholar] [CrossRef]
- Wen, P.; Wu, Z.; He, Y.; Ye, B.; Han, Y.; Guan, X.; Wang, Y. Microwave-assisted one-step synthesis and characterization of a slow release nitrogen fertilizer with inorganic and organic composites. Rsc. Adv. 2016, 6, 37337–37347. [Google Scholar] [CrossRef]
- Kangwansupamonkona, W.; Klaikaewc, N.; Kiatkamjornwongc, S. Green synthesis of titanium dioxide/acrylamide-based hydrogel composite, self degradation and environmental applications. Eur. Polym. J. 2018, 107, 118–131. [Google Scholar] [CrossRef]
- Thakur, S.; Pandey, S.; Arotiba, O.A. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 2016, 153, 34–46. [Google Scholar] [CrossRef]
- Anjum, S.; Gurave, P.; Badiger, M.V.; Torris, A.; Tiwari, N.; Gupta, B. Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 2017, 126, 196–205. [Google Scholar] [CrossRef]
- Ismail, H.; Irani, M.; Ahmad, Z.J.M. Utilization of waste polystyrene and starch for superabsorbent composite preparation. J. Appl. Polym. Sci. 2013, 127, 4195–4202. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, X.; Mao, S.; Zhang, L.; Lu, J. Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu (II) ions. Appl. Surf. Sci. 2017, 394, 378–385. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F. Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis. Chem. Eng. J. 2018, 331, 169–176. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, X.; Ye, X.; Zhu, H.; Kong, L.; Hou, T. Functionalized polyacrylonitrile fibers with durable antibacterial activity and superior Cu (II)-removal performance. Mater. Chem. Phys. 2020, 245, 122755–122765. [Google Scholar] [CrossRef]
- Cen, R.; Wang, K.; Shu, W. Preparation and swelling properties of organoclay/super-absorbent resin using polyacrylonitrile fiber wastes. Adv. Mater. Res. 2015, 1120, 635–638. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, F.; Liu, L.; Yao, J. Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydr. Polym. 2013, 91, 277–283. [Google Scholar] [CrossRef]
- Aloulou, F.; Boufi, S.; Labidi, J. Modified cellulose fibers for adsorption of organic compound in aqueous solution. Sep. Purif. Technol. 2006, 52, 332–342. [Google Scholar] [CrossRef]
- Wan, T.; Huang, R.; Zhao, Q.; Xiong, L.; Luo, L.; Tian, X.; Cai, G. Synthesis and swelling properties of corn stalk-composite superabsorbent. J. Appl. Polym. Sci. 2013, 130, 698–703. [Google Scholar] [CrossRef]
- Liu, H.; Liang, W.; Qin, H.; Wang, Q. Thermal behavior of co-combustion of oil shale semi-coke with torrefied cornstalk. Appl. Therm. Eng. 2016, 109, 653–662. [Google Scholar] [CrossRef]
- Yörük, C.R.; Meriste, T.; Sener, S.; Kuusik, R.; Trikkel, A. Thermogravimetric analysis and process simulation of oxy-fuel combustion of blended fuels including oil shale, semicoke, and biomass. Int. J. Energy Res. 2018, 42, 2213–2224. [Google Scholar] [CrossRef]
- Trikkel, A.; Kuusik, R.; Martins, A.; Pihu, T.; Stencel, J.M. Utilization of estonian oil shale semicoke. Fuel Process. Technol. 2008, 89, 756–763. [Google Scholar] [CrossRef]
- Nicolini, J.; Pereira, B.F.; Pillon, C.N.; Machado, V.G.; Lopes, W.A.; Andrade, J.B. Characterization of Brazilian oil shale byproducts planned for use as soil conditioners for food and agroenergy production. J. Anal. Appl. Pyrol. 2011, 2, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Xue, Q.; Wang, J. Effect of mixing charge of highly reactive semicoke nut on the reaction of high Al2O3 ferrous burden in blast furnace. Ironmak. Steelmak. 2017, 30, 477–484. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Liu, L.; Chen, Y.; Zhang, Z.; Wang, X. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Appl. Surf. Sci. 2014, 313, 660–668. [Google Scholar] [CrossRef]
- Han, X.; Kulaots, I.; Jiang, X.; Suuberg, E.M. Review of oil shale semicoke and its combustion utilization. Fuel 2014, 126, 143–161. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Liu, J.; Mei, H.; Yong, D.; Li, J. Preparation, swelling behaviors and fertilizer-release properties of sodium humate modified superabsorbent resin. Mater. Today Commun. 2019, 19, 124–130. [Google Scholar] [CrossRef]
- Li, A.; Zhao, Y.; Wang, A. Study on superabsorbent composite. XII. Effect of ion-exchanged attapulgite on water absorbency of poly (acrylic acid)/attapulgite superabsorbent composites. J. Appl. Polym. Sci. 2007, 6, 3476–3482. [Google Scholar] [CrossRef]
- Khushbu, S.G.; Warkar, A.K. Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. Polymer 2019, 182, 121823–121832. [Google Scholar] [CrossRef]
- Fang, S.; Wang, G.; Li, P.; Xing, R.; Liu, S.; Qin, Y.; Yu, H.; Chen, X.; Li, K. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int. J. Biol. Macromol. 2018, 115, 754–761. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953; pp. 61–63. [Google Scholar]
- Wang, W.; Wang, A. Synthesis and swelling properties of guar gum-g-poly (sodium acrylate)/Na-montmorillonite superabsorbent nanocomposite. J. Compos. Mater. 2009, 43, 2805–2819. [Google Scholar] [CrossRef]
- Behrouzi, M.; Moghadam, P.N. Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydr. Polym. 2018, 202, 227–235. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, X.; Zhen, J.; Lei, Z. Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr. Polym. 2019, 225, 115214–115224. [Google Scholar] [CrossRef]
- Rashidzadeh, A.; Olad, A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym. 2014, 114, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Kang, Y.; Wang, A. Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos. Part B Eng. 2011, 42, 809–818. [Google Scholar] [CrossRef]
- Lee, W.F.; Wu, R.J. Superabsorbent polymeric materials. I. Swelling behaviors of crosslinked poly (sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution. J. Appl. Polym. Sci. 1996, 62, 1099–1114. [Google Scholar] [CrossRef]
- He, G.; Ke, W.; Chen, X.; Kong, Y.; Zheng, H.; Yin, Y.; Cai, W. Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React. Funct. Polym. 2017, 111, 14–21. [Google Scholar] [CrossRef]
- Kabiri, K.; Omidian, H.; Hashemi, S.H.; Zohuriaan-Mehr, M.J. Synthesis of fast-swelling superabsorbent hydrogels: Effect of crosslinker type and concentration on porosity and absorption rate. Eur. Polym. J. 2003, 39, 1341–1348. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F. A new approach for blending waste plastics processing: Superabsorbent resin synthesis. J. Clean. Prod. 2018, 197, 501–510. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Samples | Qeq (g/g) | Q∞ (g/g) | Kis (g/g·s) | Ks (× 10−5, g/g·s) |
---|---|---|---|---|
PAA/SC (0 wt%) | 151 | 158 | 1.6009 | 6.4128 |
PAA/SC (2 wt%) | 313 | 320 | 3.9246 | 3.8326 |
PAA/SC (6 wt%) | 366 | 378 | 4.3605 | 3.0518 |
PAA/SC (10 wt%) | 584 | 592 | 6.6798 | 1.9060 |
PAA/SC (14 wt%) | 436 | 441 | 5.1533 | 2.6498 |
PAA/SC (18 wt%) | 381 | 398 | 4.7455 | 2.9958 |
Samples | Qeq (g/g) | Q∞ (g/g) | Kis (g/g·s) | Ks (× 10−4, g/g·s) |
---|---|---|---|---|
PAA/SC (0 wt%) | 46 | 48 | 0.5256 | 2.2812 |
PAA/SC (2 wt%) | 60 | 63 | 0.6646 | 1.6745 |
PAA/SC (6 wt%) | 67 | 68 | 0.7205 | 1.5582 |
PAA/SC (10 wt%) | 75 | 78 | 0.7798 | 1.2817 |
PAA/SC (14 wt%) | 69 | 70 | 0.7033 | 1.4353 |
PAA/SC (18 wt%) | 63 | 65 | 0.7455 | 1.7645 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, Y.; Liu, Y.; Wang, A. Fabrication of Eco-Friendly Superabsorbent Composites Based on Waste Semicoke. Polymers 2020, 12, 2347. https://doi.org/10.3390/polym12102347
Wang Y, Zhu Y, Liu Y, Wang A. Fabrication of Eco-Friendly Superabsorbent Composites Based on Waste Semicoke. Polymers. 2020; 12(10):2347. https://doi.org/10.3390/polym12102347
Chicago/Turabian StyleWang, Yongsheng, Yongfeng Zhu, Yan Liu, and Aiqin Wang. 2020. "Fabrication of Eco-Friendly Superabsorbent Composites Based on Waste Semicoke" Polymers 12, no. 10: 2347. https://doi.org/10.3390/polym12102347
APA StyleWang, Y., Zhu, Y., Liu, Y., & Wang, A. (2020). Fabrication of Eco-Friendly Superabsorbent Composites Based on Waste Semicoke. Polymers, 12(10), 2347. https://doi.org/10.3390/polym12102347